Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33333024

ABSTRACT

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Subject(s)
COVID-19/genetics , Coronavirus Infections/genetics , Coronavirus/physiology , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , A549 Cells , Animals , Biosynthetic Pathways/drug effects , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cholesterol/biosynthesis , Cholesterol/metabolism , Cluster Analysis , Clustered Regularly Interspaced Short Palindromic Repeats , Common Cold/genetics , Common Cold/virology , Coronavirus/classification , Coronavirus Infections/virology , Gene Knockout Techniques , Host-Pathogen Interactions/drug effects , Humans , Mice , Phosphatidylinositols/biosynthesis , Vero Cells , Virus Internalization/drug effects , Virus Replication
2.
PLoS Biol ; 21(6): e3002144, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37289745

ABSTRACT

Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CLpro) encoded by diverse coronaviruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CLpro, including 3CLpro-mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8's ability to sense coronavirus 3CLpros and, instead, enables sensing of 3C proteases (3Cpro) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intraspecies variation in inflammasome-mediated viral sensing and immunopathology.


Subject(s)
COVID-19 , Picornaviridae , Humans , Inflammasomes/metabolism , Picornaviridae/genetics , Picornaviridae/metabolism , SARS-CoV-2/metabolism , Protease Inhibitors , Apoptosis Regulatory Proteins/metabolism , Neoplasm Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism
3.
Article in English | MEDLINE | ID: mdl-33046485

ABSTRACT

Hepatitis B virus (HBV) mRNA metabolism is dependent upon host proteins PAPD5 and PAPD7 (PAPD5/7). PAPD5/7 are cellular, noncanonical, poly(A) polymerases (PAPs) whose main function is to oligoadenylate the 3' end of noncoding RNA (ncRNA) for exosome degradation. HBV seems to exploit these two ncRNA quality-control factors for viral mRNA stabilization, rather than degradation. RG7834 is a small-molecule compound that binds PAPD5/7 and inhibits HBV gene production in both tissue culture and animal study. We reported that RG7834 was able to destabilize multiple HBV mRNA species, ranging from the 3.5-kb pregenomic/precore mRNAs to the 2.4/2.1-kb hepatitis B virus surface protein (HBs) mRNAs, except for the smallest 0.7-kb X protein (HBx) mRNA. Compound-induced HBV mRNA destabilization was initiated by a shortening of the poly(A) tail, followed by an accelerated degradation process in both the nucleus and cytoplasm. In cells expressing HBV mRNA, both PAPD5/7 were found to be physically associated with the viral RNA, and the polyadenylating activities of PAPD5/7 were susceptible to RG7834 repression in a biochemical assay. Moreover, in PAPD5/7 double-knockout cells, viral transcripts with a regular length of the poly(A) sequence could be initially synthesized but became shortened in hours, suggesting that participation of PAPD5/7 in RNA 3' end processing, either during adenosine oligomerization or afterward, is crucial for RNA stabilization.


Subject(s)
Hepatitis B virus , Hepatitis B , Animals , Hepatitis B virus/genetics , Membrane Proteins , RNA, Messenger/genetics , RNA, Viral/genetics , Ribonucleases , Virus Replication
4.
Nat Chem Biol ; 18(5): 439-440, 2022 05.
Article in English | MEDLINE | ID: mdl-35165444
5.
Elife ; 122023 07 07.
Article in English | MEDLINE | ID: mdl-37417868

ABSTRACT

Inflammasomes are cytosolic innate immune complexes that assemble upon detection of diverse pathogen-associated cues and play a critical role in host defense and inflammatory pathogenesis. Here, we find that the human inflammasome-forming sensor CARD8 senses HIV-1 infection via site-specific cleavage of the CARD8 N-terminus by the HIV protease (HIV-1PR). HIV-1PR cleavage of CARD8 induces pyroptotic cell death and the release of pro-inflammatory cytokines from infected cells, processes regulated by Toll-like receptor stimulation prior to viral infection. In acutely infected cells, CARD8 senses the activity of both de novo translated HIV-1PR and packaged HIV-1PR that is released from the incoming virion. Moreover, our evolutionary analyses reveal that the HIV-1PR cleavage site in human CARD8 arose after the divergence of chimpanzees and humans. Although chimpanzee CARD8 does not recognize proteases from HIV or simian immunodeficiency viruses from chimpanzees (SIVcpz), SIVcpz does cleave human CARD8, suggesting that SIVcpz was poised to activate the human CARD8 inflammasome prior to its cross-species transmission into humans. Our findings suggest a unique role for CARD8 inflammasome activation in response to lentiviral infection of humans.


Subject(s)
HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Humans , Inflammasomes/metabolism , Pan troglodytes/metabolism , Apoptosis Regulatory Proteins/metabolism , Neoplasm Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism
6.
bioRxiv ; 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36172130

ABSTRACT

Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CL pro ) encoded by diverse coronaviruses, including SARS-CoV-2, cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CL pro , including 3CL pro -mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8’s ability to sense coronavirus 3CL pros , and instead enables sensing of 3C proteases (3C pro ) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intra-species variation in inflammasome-mediated viral sensing and immunopathology.

7.
Cell Rep ; 34(11): 108859, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730579

ABSTRACT

Hepatitis A virus (HAV) is a positive-sense RNA virus causing acute inflammation of the liver. Here, using a genome-scale CRISPR screen, we provide a comprehensive picture of the cellular factors that are exploited by HAV. We identify genes involved in sialic acid/ganglioside biosynthesis and members of the eukaryotic translation initiation factor complex, corroborating their putative roles for HAV. Additionally, we uncover all components of the cellular machinery for UFMylation, a ubiquitin-like protein modification. We show that HAV translation specifically depends on UFM1 conjugation of the ribosomal protein RPL26. Furthermore, we find that components related to the yeast Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex are required for viral translation independent of controlling viral poly(A) tails or RNA stability. Finally, we demonstrate that pharmacological inhibition of the TRAMP-like complex decreases HAV replication in hepatocyte cells and human liver organoids, thus providing a strategy for host-directed therapy of HAV infection.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Human , Hepatitis A virus/physiology , Hepatitis/virology , Host-Pathogen Interactions , Multiprotein Complexes/metabolism , Proteins/metabolism , Ubiquitination , Antiviral Agents/metabolism , Catalysis , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , DNA-Directed DNA Polymerase/metabolism , Hepatitis/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/virology , Host-Pathogen Interactions/drug effects , Humans , Organoids/drug effects , Organoids/metabolism , Organoids/virology , Polyadenylation/drug effects , Protein Biosynthesis/drug effects , RNA Nucleotidyltransferases/metabolism , RNA Stability/drug effects , RNA Stability/genetics , RNA, Viral/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae , Small Molecule Libraries/pharmacology , Virus Replication/drug effects
8.
bioRxiv ; 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32995787

ABSTRACT

The Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle as well as the potential development of host-directed therapies.

9.
Elife ; 82019 09 13.
Article in English | MEDLINE | ID: mdl-31516121

ABSTRACT

Flaviviruses translate their genomes as multi-pass transmembrane proteins at the endoplasmic reticulum (ER) membrane. Here, we show that the ER membrane protein complex (EMC) is indispensable for the expression of viral polyproteins. We demonstrated that EMC was essential for accurate folding and post-translational stability rather than translation efficiency. Specifically, we revealed degradation of NS4A-NS4B, a region rich in transmembrane domains, in absence of EMC. Orthogonally, by serial passaging of virus on EMC-deficient cells, we identified two non-synonymous point mutations in NS4A and NS4B, which rescued viral replication. Finally, we showed a physical interaction between EMC and viral NS4B and that the NS4A-4B region adopts an aberrant topology in the absence of the EMC leading to degradation. Together, our data highlight how flaviviruses hijack the EMC for transmembrane protein biogenesis to achieve optimal expression of their polyproteins, which reinforces a role for the EMC in stabilizing challenging transmembrane proteins during synthesis.


Subject(s)
Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Flavivirus/growth & development , Gene Expression , Host-Pathogen Interactions , Membrane Proteins/metabolism , Polyproteins/biosynthesis , Cell Line , Hepatocytes/virology , Humans , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL