Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Publication year range
1.
Mol Genet Metab ; 141(3): 108118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244286

ABSTRACT

Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease. Therefore, besides examining the genetic influence, we aim to elucidate the potential impact of pre-symptomatic diagnosis, emergency management and other modifying variables on the clinical phenotype. We investigated genotype-phenotype correlations in individuals sharing the same genotypes (n = 30 individuals), and in those sharing the same missense variants with a loss-of-function variant in trans (n = 38 individuals). Effects of a pre-symptomatic diagnosis and emergency management on the severity of acute liver failure (ALF) episodes also were analysed, comparing liver function tests (ALAT, ASAT, INR) and mortality. A strong genotype-phenotype correlation was demonstrated in individuals sharing the same genotype; this was especially true for the ILFS2 subgroup. Genotype-phenotype correlation in patients sharing only one missense variant was still high, though at a lower level. Pre-symptomatic diagnosis in combination with an emergency management protocol leads to a trend of reduced severity of ALF. High genetic impact on clinical phenotype in NBAS-associated disease facilitates monitoring and management of affected patients sharing the same genotype. Pre-symptomatic diagnosis and an emergency management protocol do not prevent ALF but may reduce its clinical severity.


Subject(s)
Liver Failure, Acute , Neuroblastoma , Pelger-Huet Anomaly , Humans , Phenotype , Pelger-Huet Anomaly/complications , Pelger-Huet Anomaly/genetics , Pelger-Huet Anomaly/pathology , Liver Failure, Acute/genetics , Mutation, Missense , Neuroblastoma/complications
2.
J Med Genet ; 59(9): 865-877, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34815299

ABSTRACT

BACKGROUND: Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS: We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS: Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION: This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.


Subject(s)
Abnormalities, Multiple , Ehlers-Danlos Syndrome , Abnormalities, Multiple/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Female , Genetic Association Studies , Humans , Male , Phenotype , Sulfotransferases/genetics
3.
Hum Mutat ; 43(10): 1472-1489, 2022 10.
Article in English | MEDLINE | ID: mdl-35815345

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for faithful assignment of amino acids to their cognate tRNA. Variants in ARS genes are frequently associated with clinically heterogeneous phenotypes in humans and follow both autosomal dominant or recessive inheritance patterns in many instances. Variants in tryptophanyl-tRNA synthetase 1 (WARS1) cause autosomal dominantly inherited distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Presently, only one family with biallelic WARS1 variants has been described. We present three affected individuals from two families with biallelic variants (p.Met1? and p.(Asp419Asn)) in WARS1, showing varying severities of developmental delay and intellectual disability. Hearing impairment and microcephaly, as well as abnormalities of the brain, skeletal system, movement/gait, and behavior were variable features. Phenotyping of knocked down wars-1 in a Caenorhabditis elegans model showed depletion is associated with defects in germ cell development. A wars1 knockout vertebrate model recapitulates the human clinical phenotypes, confirms variant pathogenicity, and uncovers evidence implicating the p.Met1? variant as potentially impacting an exon critical for normal hearing. Together, our findings provide consolidating evidence for biallelic disruption of WARS1 as causal for an autosomal recessive neurodevelopmental syndrome and present a vertebrate model that recapitulates key phenotypes observed in patients.


Subject(s)
Amino Acyl-tRNA Synthetases , Charcot-Marie-Tooth Disease , Tryptophan-tRNA Ligase , Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , Exons , Humans , Mutation , Pedigree , RNA, Transfer/genetics , Syndrome , Tryptophan-tRNA Ligase/genetics
4.
Am J Med Genet A ; 185(4): 1242-1246, 2021 04.
Article in English | MEDLINE | ID: mdl-33438813

ABSTRACT

At the 43rd annual meeting of the ASHG in 1993, the senior author reported monozygotic twins with discordant phenotype due to a ring 13 chromosomal mosaic syndrome in one of them. Her major manifestations included: intrauterine growth restriction (IUGR), failure to thrive (FTT), delayed developmental milestones/intellectual disability (DDM/ID), left hemihypoplasia of her body with leg length discrepancy, left profound deafness due to inner ear malformation, telecanthus, dental anomalies mainly on the left side, congenital torticollis due to Klippel-Feil anomaly, 13 ribs, scoliosis, dislocation of the left hip, and distinctive left hand and feet. A blood karyotype at age 31/2 was normal. Silver-Russell syndrome was initially suspected; however, at age 4, a karyotype on skin fibroblasts showed a ring 13 chromosomal mosaicism, 46,XX,15s+/46,XX,-13,+r(13),15s+, with a higher frequency on the left side of the body. Since then, we have been involved in the management of this patient for 30 years. This has ultimately allowed us to compare her achievements with her normal monozygotic twin. In this long term follow-up, we want to emphasize the importance of: (a) early recognition of genetic syndromes, especially of mosaicisms, and of early intervention programs, (b) the involvement of different specialists in the management of patients with MCA, and (c) mentioning how familial and socioeconomic issues may limit or enhance the full potential of patients with some genetic disorders.


Subject(s)
Diseases in Twins/genetics , Fetal Growth Retardation/genetics , Turner Syndrome/genetics , Child, Preschool , Chromosomes, Human, Pair 13/genetics , Diseases in Twins/diagnosis , Diseases in Twins/pathology , Female , Fetal Growth Retardation/pathology , Follow-Up Studies , Humans , Infant, Newborn , Karyotype , Mosaicism , Phenotype , Ring Chromosomes , Turner Syndrome/pathology , Twins, Monozygotic/genetics
5.
Am J Med Genet A ; 185(3): 916-922, 2021 03.
Article in English | MEDLINE | ID: mdl-33369125

ABSTRACT

ALX4 is a homeobox gene expressed in the mesenchyme of developing bone and is known to play an important role in the regulation of osteogenesis. Enlarged parietal foramina (EPF) is a phenotype of delayed intramembranous ossification of calvarial bones due to variants of ALX4. The contrasting phenotype of premature ossification of sutures is observed with heterozygous loss-of-function variants of TWIST1, which is an important regulator of osteoblast differentiation. Here, we describe an individual with a large cranium defect, with dominant transmission from the mother, both carrying disease causing heterozygous variants in ALX4 and TWIST1. The distinct phenotype of absent superior and posterior calvarium in the child and his mother was in sharp contrast to the other affected maternal relatives with a recognizable ALX4-related EPF phenotype. This report demonstrates comorbid disorders of Saethre-Chotzen syndrome and EPF in a mother and her child, resulting in severe skull defects reminiscent of calvarial abnormalities observed with bilallelic ALX4 variants. To our knowledge this is the first instance of ALX4 and TWIST1 variants acting synergistically to cause a unique phenotype influencing skull ossification.


Subject(s)
Abnormalities, Multiple/genetics , Acrocephalosyndactylia/genetics , DNA-Binding Proteins/genetics , Frameshift Mutation , Loss of Function Mutation , Mutation, Missense , Nuclear Proteins/genetics , Osteogenesis/genetics , Skull/abnormalities , Transcription Factors/genetics , Twist-Related Protein 1/genetics , Adult , Cerebellar Vermis/abnormalities , DNA-Binding Proteins/deficiency , Female , Foot Deformities, Congenital/genetics , Genes, Dominant , Hand Deformities, Congenital/genetics , Heterozygote , Humans , Imaging, Three-Dimensional , Infant, Newborn , Male , Nuclear Proteins/deficiency , Pedigree , Pregnancy , Skull/diagnostic imaging , Skull/embryology , Syndactyly/genetics , Thumb/abnormalities , Tomography, X-Ray Computed , Transcription Factors/deficiency , Twist-Related Protein 1/deficiency , Ultrasonography, Prenatal , Exome Sequencing
6.
PLoS Genet ; 14(11): e1007671, 2018 11.
Article in English | MEDLINE | ID: mdl-30500825

ABSTRACT

Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Mitochondrial Proteins/genetics , Mutation , Protein Interaction Domains and Motifs/genetics , ral GTP-Binding Proteins/genetics , ras Proteins/genetics , Facies , Genotype , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Humans , Mitochondrial Proteins/chemistry , Models, Molecular , Mutation, Missense , Phenotype , Protein Conformation , ral GTP-Binding Proteins/chemistry , ras Proteins/chemistry
7.
Am J Med Genet A ; 182(7): 1785-1790, 2020 07.
Article in English | MEDLINE | ID: mdl-32324310

ABSTRACT

Basel-Vanagaite-Smirin-Yosef syndrome is a recently described autosomal recessive intellectual disability syndrome caused by variants in the MED25 gene. While it was originally identified in Brazil, it was further described in Israel by authors who are now the namesake of the condition. A 2018 publication further contributed to its delineation, but the patient's phenotype was complicated by a dual diagnosis. More recently, an article describing a set of affected siblings was published. We describe three, previously unreported, patients showing clinical variability for this newly defined syndrome. The major features determined by "reverse phenotyping" include significant to profound developmental delays/intellectual disability with absent or delayed speech, epilepsy, ocular abnormalities, cleft lip and/or palate, congenital heart disease, urogenital anomalies, skeletal abnormalities, brain malformations and/or microcephaly, failure to thrive, and dysmorphic features. The authors suggest the delineation of an acronym using the gene name and common features seen across the majority of patients reported so far. This new nomination, MED-DOCS, may help clinicians to recognize, suspect, and remember this novel syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Mediator Complex/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/physiopathology , Brazil/epidemiology , Child, Preschool , Cleft Lip/genetics , Cleft Lip/physiopathology , Female , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/physiopathology , Israel/epidemiology , Male , Microcephaly/diagnosis , Microcephaly/genetics , Microcephaly/physiopathology , Phenotype , Polymorphism, Single Nucleotide/genetics
8.
Am J Med Genet A ; 182(7): 1767-1775, 2020 07.
Article in English | MEDLINE | ID: mdl-32297715

ABSTRACT

Autosomal recessive SOPH syndrome was first described in the Yakuts population of Asia by Maksimova et al. in 2010. It arises from biallelic pathogenic variants in the NBAS gene and is characterized by severe postnatal growth retardation, senile facial appearance, small hands and feet, optic atrophy with loss of visual acuity and color vision, and normal intelligence (OMIM #614800). The presence of Pelger-Hüet anomaly in this disorder led to its name as an acronym for Short stature, Optic nerve atrophy, and Pelger-Hüet anomaly. Recent publications have further contributed to the characterization of this syndrome through additional phenotype-genotype correlations. We review the clinical features described in these publications and report on a 27-year-old woman with dwarfism with osteolysis and multiple skeletal problems, minor anomalies, immunodeficiency, diabetes mellitus, and multiple secondary medical problems. Her condition was considered an unknown autosomal recessive disorder for many years until exome sequencing provided the diagnosis by revealing a founder disease-causing variant that was compound heterozygous with a novel pathogenic variant in NBAS. Based on the major clinical features of this individual and others reported earlier, a revision of the acronym is warranted to facilitate clinical recognition.


Subject(s)
Dwarfism/genetics , Immunologic Deficiency Syndromes/genetics , Neoplasm Proteins/genetics , Pelger-Huet Anomaly/genetics , Adult , Dwarfism/complications , Dwarfism/pathology , Female , Genetic Predisposition to Disease , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/pathology , Mutation/genetics , Optic Atrophy/genetics , Optic Atrophy/pathology , Pelger-Huet Anomaly/complications , Pelger-Huet Anomaly/pathology , Exome Sequencing
9.
Am J Med Genet A ; 179(7): 1276-1286, 2019 07.
Article in English | MEDLINE | ID: mdl-31124279

ABSTRACT

Lysine-specific demethylase 6B (KDM6B) demethylates trimethylated lysine-27 on histone H3. The methylation and demethylation of histone proteins affects gene expression during development. Pathogenic alterations in histone lysine methylation and demethylation genes have been associated with multiple neurodevelopmental disorders. We have identified a number of de novo alterations in the KDM6B gene via whole exome sequencing (WES) in a cohort of 12 unrelated patients with developmental delay, intellectual disability, dysmorphic facial features, and other clinical findings. Our findings will allow for further investigation in to the role of the KDM6B gene in human neurodevelopmental disorders.


Subject(s)
Genetic Variation , Jumonji Domain-Containing Histone Demethylases/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Child, Preschool , Cohort Studies , Female , Humans , Male
10.
Cleft Palate Craniofac J ; 56(5): 674-678, 2019 05.
Article in English | MEDLINE | ID: mdl-30343593

ABSTRACT

We report 2 cases of mandibulofacial dysostosis with microcephaly (MFDM) with different and novel de novo mutations in the elongation factor Tu GTP binding domain containing 2 gene. Both cases were initially thought to have alternative disorders but were later correctly diagnosed through whole-exome sequencing. These cases expand upon our knowledge of the phenotypic spectrum in patients with MFDM, which will aid in defining the full phenotype of this disorder and increase awareness of this condition.


Subject(s)
Mandibulofacial Dysostosis , Peptide Elongation Factors/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Humans , Mandibulofacial Dysostosis/genetics , Microcephaly , Mutation , Phenotype
11.
Am J Med Genet A ; 176(12): 2564-2574, 2018 12.
Article in English | MEDLINE | ID: mdl-30302899

ABSTRACT

Schaaf-Yang Syndrome (SYS) is a genetic disorder caused by truncating pathogenic variants in the paternal allele of the maternally imprinted, paternally expressed gene MAGEL2, located in the Prader-Willi critical region 15q11-15q13. SYS is a neurodevelopmental disorder that has clinical overlap with Prader-Willi Syndrome in the initial stages of life but becomes increasingly distinct throughout childhood and adolescence. Here, we describe the phenotype of an international cohort of 78 patients with nonsense or frameshift mutations in MAGEL2. This cohort includes 43 individuals that have been reported previously, as well as 35 newly identified individuals with confirmed pathogenic genetic variants. We emphasize that intellectual disability/developmental delay, autism spectrum disorder, neonatal hypotonia, infantile feeding problems, and distal joint contractures are the most consistently shared features of patients with SYS. Our results also indicate that there is a marked prevalence of infantile respiratory distress, gastroesophageal reflux, chronic constipation, skeletal abnormalities, sleep apnea, and temperature instability. While there are many shared features, patients with SYS are characterized by a wide phenotypic spectrum, including a variable degree of intellectual disability, language development, and motor milestones. Our results indicate that the variation in phenotypic severity may depend on the specific location of the truncating mutation, suggestive of a genotype-phenotype association. This evidence may be useful in both prenatal and pediatric genetic counseling.


Subject(s)
Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Proteins/genetics , Adolescent , Child , Child, Preschool , Codon, Nonsense , Female , Frameshift Mutation , Genetic Association Studies , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Male , Phenotype , Syndrome , Young Adult
12.
Hum Mol Genet ; 22(9): 1816-25, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23376982

ABSTRACT

The nonsense-mediated mRNA decay (NMD) pathway functions not only to degrade transcripts containing premature termination codons (PTC), but also to regulate the transcriptome. UPF3B and RBM8A, important components of NMD, have been implicated in various forms of intellectual disability (ID) and Thrombocytopenia with Absent Radius (TAR) syndrome, which is also associated with ID. To gauge the contribution of other NMD factors to ID, we performed a comprehensive search for copy number variants (CNVs) of 18 NMD genes among individuals with ID and/or congenital anomalies. We identified 11 cases with heterozygous deletions of the genomic region encompassing UPF2, which encodes for a direct interacting protein of UPF3B. Using RNA-Seq, we showed that the genome-wide consequence of reduced expression of UPF2 is similar to that seen in patients with UPF3B mutations. Out of the 1009 genes found deregulated in patients with UPF2 deletions by at least 2-fold, majority (95%) were deregulated similarly in patients with UPF3B mutations. This supports the major role of deletion of UPF2 in ID. Furthermore, we found that four other NMD genes, UPF3A, SMG6, EIF4A3 and RNPS1 are frequently deleted and/or duplicated in the patients. We postulate that dosage imbalances of these NMD genes are likely to be the causes or act as predisposing factors for neuro-developmental disorders. Our findings further emphasize the importance of NMD pathway(s) in learning and memory.


Subject(s)
DNA Copy Number Variations , Developmental Disabilities/genetics , Neurons/cytology , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , Adolescent , Case-Control Studies , Child , Codon, Nonsense , Computational Biology , DEAD-box RNA Helicases/genetics , Developmental Disabilities/pathology , Eukaryotic Initiation Factor-4A/genetics , Female , Gene Deletion , Gene Dosage , Genetic Predisposition to Disease , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Neurons/pathology , RNA-Binding Proteins/genetics , Ribonucleoproteins/genetics , Sequence Analysis, RNA , Telomerase/genetics , Transcription Factors/genetics , Transcriptome
13.
Hum Mutat ; 35(12): 1469-75, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25205021

ABSTRACT

Approximately 5% of all patients with neurofibromatosis type-1 (NF1) exhibit large deletions of the NF1 gene region. To date, only nine unrelated cases of large NF1 duplications have been reported, with none of the affected patients exhibiting multiple café au lait spots (CALS), Lisch nodules, freckling, or neurofibromas, the hallmark signs of NF1. Here, we have characterized two novel NF1 duplications, one sporadic and one familial. Both index patients with NF1 duplications exhibited learning disabilities and atypical CALS. Additionally, patient R609021 had Lisch nodules, whereas patient R653070 exhibited two inguinal freckles. The mother and sister of patient R609021 also harbored the NF1 duplication and exhibited cognitive dysfunction but no CALS. The breakpoints of the nine NF1 duplications reported previously have not been identified and hence their underlying generative mechanisms have remained unclear. In this study, we performed high-resolution breakpoint analysis that indicated that the two duplications studied were mediated by nonallelic homologous recombination (NAHR) and that the duplication breakpoints were located within the NAHR hotspot paralogous recombination site 2 (PRS2), which also harbors the type-1 NF1 deletion breakpoints. Hence, our study indicates for the first time that NF1 duplications are reciprocal to type-1 NF1 deletions and originate from the same NAHR events.


Subject(s)
Gene Deletion , Gene Duplication , Genes, Neurofibromatosis 1 , Homologous Recombination , Adolescent , Child , Humans
14.
Neurogenetics ; 14(2): 99-111, 2013 May.
Article in English | MEDLINE | ID: mdl-23389741

ABSTRACT

MEF2C haploinsufficiency syndrome is an emerging neurodevelopmental disorder associated with intellectual disability, autistic features, epilepsy, and abnormal movements. We report 16 new patients with MEF2C haploinsufficiency, including the oldest reported patient with MEF2C deletion at 5q14.3. We detail the neurobehavioral phenotype, epilepsy, and abnormal movements, and compare our subjects with those previously reported in the literature. We also investigate Mef2c expression in the developing mouse forebrain. A spectrum of neurofunctional deficits emerges, with hyperkinesis a consistent finding. Epilepsy varied from absent to severe, and included intractable myoclonic seizures and infantile spasms. Subjects with partial MEF2C deletion were statistically less likely to have epilepsy. Finally, we confirm that Mef2c is present both in dorsal primary neuroblasts and ventral gamma-aminobutyric acid(GABA)ergic interneurons in the forebrain of the developing mouse. Given interactions with several key neurodevelopmental genes such as ARX, FMR1, MECP2, and TBR1, it appears that MEF2C plays a role in several developmental stages of both dorsal and ventral neuronal cell types.


Subject(s)
Child , Epilepsy/genetics , Haploinsufficiency/genetics , Hyperkinesis/genetics , Interneurons/metabolism , Nerve Net/growth & development , Adolescent , Adult , Animals , Child, Preschool , Developmental Disabilities/genetics , Female , Gene Deletion , Humans , Infant , MEF2 Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Phenotype , Young Adult
15.
Am J Med Genet A ; 161A(4): 717-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23495017

ABSTRACT

Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray-based comparative genomic hybridization. To more firmly establish the full phenotypic spectrum associated with exonic NRXN1 deletions, we report the clinical features of 27 individuals with NRXN1 deletions, who represent 23 of these 34 families. The frequency of exonic NRXN1 deletions among our postnatally diagnosed patients (0.11%) is significantly higher than the frequency among reported controls (0.02%; P = 6.08 × 10(-7) ), supporting a role for these deletions in the development of abnormal phenotypes. Generally, most individuals with NRXN1 exonic deletions have developmental delay (particularly speech), abnormal behaviors, and mild dysmorphic features. In our cohort, autism spectrum disorders were diagnosed in 43% (10/23), and 16% (4/25) had epilepsy. The presence of NRXN1 deletions in normal parents and siblings suggests reduced penetrance and/or variable expressivity, which may be influenced by genetic, environmental, and/or stochastic factors. The pathogenicity of these deletions may also be affected by the location of the deletion within the gene. Counseling should appropriately represent this spectrum of possibilities when discussing recurrence risks or expectations for a child found to have a deletion in NRXN1.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Gene Deletion , Nerve Tissue Proteins/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adolescent , Adult , Autistic Disorder/genetics , Calcium-Binding Proteins , Child , Child, Preschool , Comparative Genomic Hybridization , Developmental Disabilities/genetics , Exons , Facies , Female , Gene-Environment Interaction , Genome-Wide Association Study , Humans , Infant , Intellectual Disability/genetics , Male , Middle Aged , Neural Cell Adhesion Molecules , Penetrance , Phenotype , Schizophrenia/genetics , Young Adult
16.
Sci Rep ; 13(1): 12984, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563198

ABSTRACT

In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.


Subject(s)
Intellectual Disability , Kallmann Syndrome , Humans , Carrier Proteins/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Intellectual Disability/genetics , Kallmann Syndrome/genetics , Membrane Proteins/genetics , Tetraspanins/genetics , Translocation, Genetic
17.
Res Sq ; 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37034680

ABSTRACT

In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.

19.
Am J Hum Genet ; 83(1): 106-11, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18565486

ABSTRACT

Infantile spasms (IS) is the most severe and common form of epilepsy occurring in the first year of life. At least half of IS cases are idiopathic in origin, with others presumed to arise because of brain insult or malformation. Here, we identify a locus for IS by high-resolution mapping of 7q11.23-q21.1 interstitial deletions in patients. The breakpoints delineate a 500 kb interval within the MAGI2 gene (1.4 Mb in size) that is hemizygously disrupted in 15 of 16 participants with IS or childhood epilepsy, but remains intact in 11 of 12 participants with no seizure history. MAGI2 encodes the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 that interacts with Stargazin, a protein also associated with epilepsy in the stargazer mouse.


Subject(s)
Chromosomes, Human, Pair 17 , Gene Deletion , Proteins/genetics , Spasms, Infantile/genetics , Adaptor Proteins, Signal Transducing , Carrier Proteins , Chromosome Breakage , Female , Genetic Markers , Guanylate Kinases , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Microsatellite Repeats , Oligonucleotide Array Sequence Analysis , Physical Chromosome Mapping , Polymorphism, Single Nucleotide , Spasms, Infantile/diagnosis , Spasms, Infantile/physiopathology
20.
Am J Med Genet A ; 155A(5): 976-85, 2011 May.
Article in English | MEDLINE | ID: mdl-21480481

ABSTRACT

We report on a novel autosomal dominant disorder with variable phenotypic expression in a three-generation family; the major features include hypertelorism, preauricular sinus, deafness, and punctal pits with lacrimal-duct obstruction. We ruled out the involvement of EYA1, SIX1, and SIX5 as candidate genes by direct sequencing of their exons and by SNP-based linkage analysis. Subsequent SNP-based whole-genome genotyping and parametric multipoint linkage analysis gave lod scores >1 at 14q31 (LOD = 3.14), 11q25 (LOD = 1.87), and 8p23 (LOD = 1.18). By genotyping additional microsatellite markers at two of these three loci and using an expanded phenotype definition, the LOD at 14q31 increased to 3.34. Direct sequencing of the gene exons within the 14q31 critical interval and a custom aCGH experiment did not show any pathogenic mutation or copy-number changes. Further sequencing of 21 kb of promoter regions showed a novel polymorphism 1,249 bp upstream from the SELIL start codon that segregated with the disease haplotype. Cloning the novel polymorphism into luciferase reporter constructs resulted in a 20% reduction in the expression levels. The identification of this family with a distinctive clinical phenotype and linkage to a novel locus at 14q31 supports the existence of a new syndrome of the branchial cleft.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 14 , Deafness/genetics , Genes, Dominant , Hypertelorism/genetics , Paranasal Sinuses/abnormalities , Cell Line , Chromosome Mapping , Codon, Initiator , Female , Gene Dosage , Humans , Infant, Newborn , Male , Pedigree , Polymerase Chain Reaction , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL