Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Anat ; 245(2): 271-288, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38613211

ABSTRACT

Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.


Subject(s)
Cochlea , Organ of Corti , Humans , Cochlea/anatomy & histology , Cochlea/physiology , Organ of Corti/anatomy & histology , Organ of Corti/physiology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Signal Transduction/physiology , Basilar Membrane/anatomy & histology , Basilar Membrane/physiology
2.
Audiol Neurootol ; : 1-13, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38763131

ABSTRACT

INTRODUCTION: Otosclerosis is a bone disorder affecting the labyrinthine capsule that leads to conductive and occasionally sensorineural hearing loss. The etiology of otosclerosis remains unknown; factors such as infection, hormones, inflammation, genetics, and autoimmunity have been discussed. Treatment consists primarily of surgical stapes replacement and cochlear implantation. High-resolution computed tomography is routinely used to visualize bone pathology. In the present study, we used synchrotron radiation phase-contrast imaging (SR-PCI) to examine otosclerosis plaques in a temporal bone for the first time. The primary aim was to study their three-dimensional (3D) outline, vascular interrelationships, and connections to the middle ear. METHODS: A donated ear from a patient with otosclerosis who had undergone partial stapedectomy with the insertion of a stapes wire prosthesis was investigated using SR-PCI and compared with a control ear. Otosclerotic lesions were 3D rendered using the composite with shading technique. Scalar opacity and color mapping were adjusted to display volume properties with the removal of bones to enhance surfaces. Vascular bone channels were segmented, and the communications between lesions and the middle ear were established. RESULTS: Fenestral, cochlear, meatal, and vestibular lesions were outlined three-dimensionally. Vascular bone channels were found to be frequently connected to the middle ear mucosa, perilabyrinthine air spaces, and facial nerve vessels. Round window lesions partly embedded the cochlear aqueduct which was pathologically narrowed, while the inferior cochlear vein was significantly dilated in its proximal part. CONCLUSION: Otosclerotic/otospongiotic lesions were imaged for the first time using SR-PCI and 3D rendering. The presence of shunts and abnormal vascular connections to the labyrinth appeared to result in hyper-vascularization, overloading the venous system, and leading to sensorineural hearing loss. We speculate about possible local treatments to alleviate the impact of such critical lesions on the labyrinthine microcirculation.

3.
Magn Reson Med ; 86(5): 2482-2496, 2021 11.
Article in English | MEDLINE | ID: mdl-34196049

ABSTRACT

PURPOSE: To introduce and characterize inexpensive and easily produced 3D-printed axon-mimetic diffusion MRI phantoms in terms of pore geometry and diffusion kurtosis imaging metrics. METHODS: Phantoms were 3D-printed with a composite printing material that, after the dissolution of the polyvinyl alcohol, exhibits microscopic fibrous pores. Confocal microscopy and synchrotron phase-contrast micro-CT imaging were performed to visualize and assess the pore sizes. Diffusion MRI scans of four identical phantoms and phantoms with varying print parameters in water were performed at 9.4 T. Diffusion kurtosis imaging was fit to both data sets and used to assess the reproducibility between phantoms and effects of print parameters on diffusion kurtosis imaging metrics. Identical scans were performed 25 and 76 days later, to test their stability. RESULTS: Segmentation of pores in three microscopy images yielded a mean, median, and SD of equivalent pore diameters of 7.57 µm, 3.51 µm, and 12.13 µm, respectively. Phantoms had T1 /T2 = 2 seconds/180 ms, and those with identical parameters showed a low coefficient of variation (~10%) in mean diffusivity (1.38 × 10-3 mm2 /s) and kurtosis (0.52) metrics and radial diffusivity (1.01 × 10-3 mm2 /s) and kurtosis (1.13) metrics. Printing temperature and speed had a small effect on diffusion kurtosis imaging metrics (< 16%), whereas infill density had a larger and more variable effect (> 16%). The stability analysis showed small changes over 2.5 months (< 7%). CONCLUSION: Three-dimension-printed axon-mimetic phantoms can mimic the fibrous structure of axon bundles on a microscopic scale, serving as complex, anisotropic diffusion MRI phantoms.


Subject(s)
Axons , Diffusion Magnetic Resonance Imaging , Phantoms, Imaging , Printing, Three-Dimensional , Reproducibility of Results
4.
J Anat ; 239(4): 771-781, 2021 10.
Article in English | MEDLINE | ID: mdl-34057736

ABSTRACT

The ossicular chain is a middle ear structure consisting of the small incus, malleus and stapes bones, which transmit tympanic membrane vibrations caused by sound to the inner ear. Despite being shown to be highly variable in shape, there are very few morphological studies of the ossicles. The objective of this study was to use a large sample of cadaveric ossicles to create a set of three-dimensional models and study their statistical variance. Thirty-three cadaveric temporal bone samples were scanned using micro-computed tomography (µCT) and segmented. Statistical shape models (SSMs) were then made for each ossicle to demonstrate the divergence of morphological features. Results revealed that ossicles were most likely to vary in overall size, but that more specific feature variability was found at the manubrium of the malleus, the long process and lenticular process of the incus, and the crura and footplate of the stapes. By analyzing samples as whole ossicular chains, it was revealed that when fixed at the malleus, changes along the chain resulted in a wide variety of final stapes positions. This is the first known study to create high-quality, three-dimensional SSMs of the human ossicles. This information can be used to guide otological surgical training and planning, inform ossicular prosthesis development, and assist with other ossicular studies and applications by improving automated segmentation algorithms. All models have been made publicly available.


Subject(s)
Ear Ossicles , Incus , Ear Ossicles/diagnostic imaging , Humans , Malleus , Stapes , X-Ray Microtomography
5.
Ear Hear ; 41(1): 173-181, 2020.
Article in English | MEDLINE | ID: mdl-31008733

ABSTRACT

OBJECTIVE: To three-dimensionally reconstruct Rosenthal's canal (RC) housing the human spiral ganglion (SG) using synchrotron radiation phase-contrast imaging (SR-PCI). Straight cochlear implant electrode arrays were inserted to better comprehend the electro-cochlear interface in cochlear implantation (CI). DESIGN: SR-PCI was used to reconstruct the human cochlea with and without cadaveric CI. Twenty-eight cochleae were volume rendered, of which 12 underwent cadaveric CI with a straight electrode via the round window (RW). Data were input into the 3D Slicer software program and anatomical structures were modeled using a threshold paint tool. RESULTS: The human RC and SG were reproduced three-dimensionally with artefact-free imaging of electrode arrays. The anatomy of the SG and its relationship to the sensory organ (Corti) and soft and bony structures were assessed. CONCLUSIONS: SR-PCI and computer-based three-dimensional reconstructions demonstrated the relationships among implanted electrodes, angular insertion depths, and the SG for the first time in intact, unstained, and nondecalcified specimens. This information can be used to assess stimulation strategies and future electrode designs, as well as create place-frequency maps of the SG for optimal stimulation strategies of the human auditory nerve in CI.


Subject(s)
Cochlear Implantation , Cochlear Implants , Percutaneous Coronary Intervention , Cochlea/surgery , Electrodes, Implanted , Humans , Spiral Ganglion , Synchrotrons
6.
J Anat ; 234(3): 316-326, 2019 03.
Article in English | MEDLINE | ID: mdl-30565214

ABSTRACT

A thorough knowledge of the gross and micro-anatomy of the human internal acoustic canal (IAC) is essential in vestibular schwannoma removal, cochlear implantation (CI) surgery, vestibular nerve section, and decompression procedures. Here, we analyzed the acoustic-facial cistern of the human IAC, including nerves and anastomoses using synchrotron phase contrast imaging (SR-PCI). A total of 26 fresh human temporal bones underwent SR-PCI. Data were processed using volume-rendering software to create three-dimensional (3D) reconstructions allowing soft tissue analyses, orthogonal sectioning, and cropping. A scalar opacity mapping tool was used to enhance tissue surface borders, and anatomical structures were color-labeled for improved 3D comprehension of the soft tissues. SR-PCI reproduced, for the first time, the variable 3D anatomy of the human IAC, including cranial nerve complexes, anastomoses, and arachnoid membrane invagination (acoustic-facial cistern; an extension of the cerebellopontine cistern) in unprocessed, un-decalcified specimens. An unrecognized system of arachnoid pillars and trabeculae was found to extend between the arachnoid and cranial nerves. We confirmed earlier findings that intra-meatal vestibular schwannoma may grow unseparated from adjacent nerves without duplication of the arachnoid layers. The arachnoid pillars may support and stabilize cranial nerves in the IAC and could also play a role in local fluid hydrodynamics.


Subject(s)
Arachnoid/anatomy & histology , Ear, Inner/anatomy & histology , Imaging, Three-Dimensional/methods , Temporal Bone/anatomy & histology , Humans , Neuroma, Acoustic/etiology , X-Ray Microtomography/methods
7.
J Microsc ; 273(2): 127-134, 2019 02.
Article in English | MEDLINE | ID: mdl-30431166

ABSTRACT

OBJECTIVES: To demonstrate that synchrotron radiation phase-contrast imaging (SR-PCI) can be used to visualize the intrascalar structures in implanted human cochleae and to find the optimal combination of the parameters object-to-detector distance (ODD) and beam energy (E) for visualization. MATERIALS AND METHODS: Three cadaveric implanted human temporal bones underwent SR-PCI with varying combinations of parameters ODD (3, 2 and 1 m) and E (47, 60 and 72 keV). All images were then reconstructed to a three-dimensional (3D) stack of slices. The acquired 3D images were compared using contrast-to-noise ratios (CNRs) of the basilar membrane ( CNRBM ) and the electrode array (CNRE ) and the standard deviation of the beam streaks ( σS ). Postprocessing calculations were performed using Matlab (Version 2017b, MathWorks Inc., Natick, MA, U.S.A.) with a standard significance level p < 0.05 to determine the most optimal combination of parameters. RESULTS: SR-PCI with computed tomography reconstruction provided good visualization of the anatomical features of the implanted cochleae, specifically the exact location of the electrode with respect to the BM. A single-factor ANOVA revealed a significant difference of variance for both CNRE and CNRBM , but failed to show significance for σS . A two-sample t-test failed to show any significant difference between CNRE columns of (3 m, 72 keV) and (2 m, 60 keV). The CNRBM was significantly different only at two pairs of columns, when (1 m, 72 keV) was compared against (2 m, 72 keV) and (3 m, 72 keV). CONCLUSIONS: The results of this study show that SR-PCI is a viable method to visualize implanted human cochleae. SR-PCI is less invasive, less labour intensive and is associated with a much lower acquisition time compared to other methods for postimplantation imaging in humans, such as histological sectioning. We found that the optimal combination of E and ODD parameters was 72 keV and 2 m, respectively. These parameters resulted in high-contrast images of the electrode as well as all internal structures of the cochleae. LAY DESCRIPTION: Cochlear implants (CI) are currently the preferred method of treatment for hearing loss. Cochlear implantation surgery involves placement of a metallic, wire-shaped electrode inside the cochlea, the main organ of the human hearing system. Knowledge of the exact location of the electrode after implantation is beneficial in improving the extent of restored hearing. Common clinical imaging modalities such as computed-tomography (CT) are not ideal for providing such information, due to lack of resolution and streaking caused by the metallic electrode. Recent studies have developed algorithms to extract the electrode location from clinical computed-tomography images and have been validated using histology or micro computed-tomography (micro-CT). Synchrotron radiation phase contrast imaging (SR-PCI) is a high-resolution imaging technique used to visualize small structures in three dimensions. Recently, SR-PCI has been shown to be an alternative to histology or micro-CT for imaging the human cochlea. However, it has not been optimized for imaging implanted human cochleae. The main objective of the present work was to find the optimal organization of imaging parameters (i.e., object-to-detector distance and beam energy) for using SR-PCI to image implanted human cochleae. Three cadaveric human cochleae were imaged using five different combinations of imaging parameters at the Canadian Light Source Inc., Saskatoon, SK, Canada. The resulting images were compared both quantitatively and qualitatively. An optimal combination of parameters was found to produce high-contrast images of the both the CI electrode and all internal structures of the cochlea with minimal streaking. SR-PCI is therefore a viable alternative to histological or micro-CT studies for post-surgical imaging of implanted human cochleae.


Subject(s)
Cochlear Implants , Imaging, Three-Dimensional/methods , Synchrotrons , Temporal Bone/diagnostic imaging , Electrodes, Implanted , Humans , Microscopy, Phase-Contrast
8.
Ear Hear ; 40(2): 393-400, 2019.
Article in English | MEDLINE | ID: mdl-29952804

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the three-dimensional (3D) anatomy and potential damage to the hook region of the human cochlea following various trajectories at cochlear implantation (CI). The goal was to determine which of the approaches can avoid lesions to the soft tissues, including the basilar membrane and its suspension to the lateral wall. Currently, there is increased emphasis on conservation of inner ear structures, even in nonhearing preservation CI surgery. DESIGN: Micro-computed tomography and various CI approaches were made in an archival collection of macerated and freshly fixed human temporal bones. Furthermore, synchrotron radiation phase-contrast imaging was used to reproduce the soft tissues. The 3D anatomy was investigated using bony and soft tissue algorithms, and influences on inner ear structures were examined. RESULTS: Micro-computed tomography with 3D rendering demonstrated the topography of the round window (RW) and osseous spiral laminae, while synchrotron imaging allowed reproduction of soft tissues such as the basilar membrane and its suspension around the RW membrane. Anterior cochleostomies and anteroinferior cochleostomies invariably damaged the intracochlear soft tissues while inferior cochleostomies sporadically left inner ear structures unaffected. CONCLUSIONS: Results suggest that cochleostomy approaches often traumatize the soft tissues at the hook region at CI surgery. For optimal structural preservation, the RW approach is, therefore, recommended.


Subject(s)
Basilar Membrane/diagnostic imaging , Cochlear Implantation , Round Window, Ear/diagnostic imaging , Basilar Membrane/pathology , Cadaver , Cochlea/diagnostic imaging , Cochlea/pathology , Cochlear Implants , Humans , Imaging, Three-Dimensional , Microscopy, Phase-Contrast , Round Window, Ear/pathology , Synchrotrons , X-Ray Microtomography
9.
Laryngoscope ; 134(6): 2889-2897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38189807

ABSTRACT

OBJECTIVES: To use synchrotron radiation phase-contrast imaging (SR-PCI) to visualize and measure the morphology of the entire cochlear scala tympani (ST) and assess cochlear implant (CI) electrode trajectories. METHODS: SR-PCI images were used to obtain geometric measurements of the cochlear scalar diameter and area at 5-degree increments in 35 unimplanted and three implanted fixed human cadaveric cochleae. RESULTS: The cross-sectional diameter and area of the cochlea were found to decrease from the base to the apex. This study represents a wide variability in cochlear morphology and suggests that even in the smallest cochlea, the ST can accommodate a 0.4 mm diameter electrode up to 720°. Additionally, all lateral wall array trajectories were within the anatomically accommodating insertion zone. CONCLUSION: This is the first study to use SR-PCI to visualize and quantify the entire ST morphology, from the round window to the apical tip, and assess the post-operative trajectory of electrodes. These high-resolution anatomical measurements can be used to inform the angular insertion depth that can be accommodated in CI patients, accounting for anatomical variability. LEVEL OF EVIDENCE: N/A. Laryngoscope, 134:2889-2897, 2024.


Subject(s)
Cadaver , Cochlear Implantation , Cochlear Implants , Scala Tympani , Synchrotrons , Humans , Cochlear Implantation/methods , Scala Tympani/surgery , Scala Tympani/anatomy & histology , Cochlea/surgery , Cochlea/anatomy & histology , Cochlea/diagnostic imaging
10.
Laryngoscope ; 134(6): 2879-2888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38197496

ABSTRACT

OBJECTIVE(S): Recently directed methods of inner ear drug delivery underscore the necessity for understanding critical anatomical dimensions. This study examines anatomical measurements of the human middle and inner ear relevant for inner ear drug delivery studied with three different imaging modalities. METHODS: Post-mortem human temporal bones were analyzed using human temporal bone histopathology (N = 24), micro computerized tomography (µCT; N = 4), and synchrotron radiation phase-contrast imaging (SR-PCI; N = 7). Nine measurements involving the oval and round windows were performed when relevant anatomical structures were visualized for subsequent age-controlled analysis, and comparisons were made between imaging methods. RESULTS: Combined human temporal bone histopathology showed the mean distance to the saccule from the center of the stapes footplate (FP) was 2.07 ± 0.357 mm and the minimum distance was 1.23 mm. The mean distance from the round window membrane (RWM) to the osseous spiral lamina (OSL) was 1.75 ± 0.199 mm and the minimum distance was 1.43 mm. Instruments inserted up to 1 mm past the center of the FP are unlikely to cause saccular damage, provided there are no endolymphatic hydrops. Similarly, instruments inserted up to 1 mm through the RWM in the trajectory toward the OSL are unlikely to cause OSL damage. CONCLUSION: The combined analyses of inner-ear dimensions of age-controlled groups and imaging modalities demonstrate critical dimensions of importance to consider when inserting delivery vehicles into the human cochlea. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:2879-2888, 2024.


Subject(s)
Ear, Inner , Genetic Therapy , Temporal Bone , X-Ray Microtomography , Humans , Temporal Bone/diagnostic imaging , Temporal Bone/anatomy & histology , Ear, Inner/diagnostic imaging , Ear, Inner/anatomy & histology , X-Ray Microtomography/methods , Genetic Therapy/methods , Cadaver , Middle Aged , Male , Female , Synchrotrons , Aged
11.
Heliyon ; 10(5): e27436, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495182

ABSTRACT

Background: The BONEBRIDGE® (Med-El GmbH) is a bone-conduction device comprising an external audio processor and an internal Bone Conduction-Floating Mass Transducer (BC-FMT) surgically anchored to the temporal bone. Due to the implant's size, its placement may be challenging in certain anatomies, necessitating thorough surgical planning. Manual planning methods are laborious, time-intensive, and prone to errors. This study aimed to develop and validate an automated algorithm for determining skull thickness, aiding in the surgical planning of the BONEBRIDGE and other devices requiring similar bone thickness estimations. Materials and methods: Twelve cadaveric temporal bones underwent clinical computed tomography (CT). A custom Python algorithm was developed to automatically segment bone from soft tissue, generate 3D models, and perform ray-tracing to estimate bone thickness. Two thickness colormaps were generated for each sample: the cortical thickness to the first air cell and the total thickness down to the dura. The algorithm was validated against expert manual measurements to achieve consensus interpretation. Results: The algorithm estimated bone-to-air thicknesses (mean = 4.7 mm, 95% Confidence Interval [CI] of 4.3-5.0 mm) that closely matched the expert measurements (mean = 4.7 mm, CI of 4.4-5.0 mm), with a mean absolute difference (MAD) of 0.3 mm. Similarly, the algorithm's estimations to the dura (6.0 mm, CI of 5.4-6.5 mm) were comparable to the expert markings (5.9 mm, CI of 5.4-6.5 mm), with a MAD of 0.3 mm. Conclusions: The first automated algorithm to calculate skull thickness to both the air cells and dura in the temporal bone was developed. Colormaps were optimized to aid with the surgical planning of BONEBRIDGE implantation, however the tool can be generalized to aid in the surgical planning of any bone thickness application. The tool was published as a freely available extension to the open-source 3D Slicer software program (www.slicer.org).

12.
Front Neurol ; 15: 1355785, 2024.
Article in English | MEDLINE | ID: mdl-38817543

ABSTRACT

Background: Despite its location near infection-prone areas, the human inner ear demonstrates remarkable resilience. This suggests that there are inherent instruments deterring the invasion and spread of pathogens into the inner ear. Here, we combined high-resolution light microscopy, super-resolution immunohistochemistry (SR-SIM) and synchrotron phase contrast imaging (SR-PCI) to identify the protection and barrier systems in the various parts of the human inner ear, focusing on the lateral wall, spiral ganglion, and endolymphatic sac. Materials and methods: Light microscopy was conducted on mid-modiolar, semi-thin sections, after direct glutaraldehyde/osmium tetroxide fixation. The tonotopic locations were estimated using SR-PCI and 3D reconstruction in cadaveric specimens. The sections were analyzed for leucocyte and macrophage activity, and the results were correlated with immunohistochemistry using confocal microscopy and SR-SIM. Results: Light microscopy revealed unprecedented preservation of cell anatomy and several macrophage-like cells that were localized in the cochlea. Immunohistochemistry demonstrated IBA1 cells frequently co-expressing MHC II in the spiral ganglion, nerve fibers, lateral wall, spiral limbus, and tympanic covering layer at all cochlear turns as well as in the endolymphatic sac. RNAscope assays revealed extensive expression of fractalkine gene transcripts in type I spiral ganglion cells. CD4 and CD8 cells occasionally surrounded blood vessels in the modiolus and lateral wall. TMEM119 and P2Y12 were not expressed, indicating that the cells labeled with IBA1 were not microglia. The round window niche, compact basilar membrane, and secondary spiral lamina may form protective shields in the cochlear base. Discussion: The results suggest that the human cochlea is surveilled by dwelling and circulating immune cells. Resident and blood-borne macrophages may initiate protective immune responses via chemokine signaling in the lateral wall, spiral lamina, and spiral ganglion at different frequency locations. Synchrotron imaging revealed intriguing protective barriers in the base of the cochlea. The role of the endolymphatic sac in human inner ear innate and adaptive immunity is discussed.

13.
Oper Neurosurg (Hagerstown) ; 26(1): 78-85, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37747333

ABSTRACT

BACKGROUND AND OBJECTIVES: Virtual reality (VR) surgical rehearsal is an educational tool that exists in a safe environment. Validation is necessary to establish the educational value of this platform. The middle cranial fossa (MCF) is ideal for simulation because trainees have limited exposure to this approach and it has considerable complication risk. Our objectives were to assess the face, content, and construct validities of an MCF VR simulation, as well as the change in performance across serial simulations. METHODS: Using high-resolution volumetric data sets of human cadavers, the authors generated a high-fidelity visual and haptic rendering of the MCF approach using CardinalSim software. Trainees from Neurosurgery and Otolaryngology-Head and Neck Surgery at two Canadian academic centers performed MCF dissections on this VR platform. Randomization was used to assess the effect of enhanced VR interaction. Likert scales were used to assess the face and content validities. Performance metrics and pre- and postsimulation test scores were evaluated. Construct validity was evaluated by examining the effect of the training level on simulation performance. RESULTS: Twenty trainees were enrolled. Face and content validities were achieved in all domains. Construct validity, however, was not demonstrated. Postsimulation test scores were significantly higher than presimulation test scores ( P < .001 ). Trainees demonstrated statistically significant improvement in the time to complete dissections ( P < .001 ), internal auditory canal skeletonization ( P < .001 ), completeness of the anterior petrosectomy ( P < .001 ), and reduced number of injuries to critical structures ( P = .001 ). CONCLUSION: This MCF VR simulation created using CardinalSim demonstrated face and content validities. Construct validity was not established because no trainee included in the study had previous MCF approach experience, which further emphasizes the importance of simulation. When used as a formative educational adjunct in both Neurosurgery and Otolaryngology-Head and Neck Surgery, this simulation has the potential to enhance understanding of the complex anatomic relationships of critical neurovascular structures.


Subject(s)
Neurosurgery , Virtual Reality , Humans , Cranial Fossa, Middle/surgery , Canada , Computer Simulation , Neurosurgery/education
14.
Comput Biol Med ; 157: 106747, 2023 05.
Article in English | MEDLINE | ID: mdl-36907036

ABSTRACT

Finite element (FE) models of the middle ear often lack accurate geometry of soft tissue structures, such as the suspensory ligaments, as they can be difficult to discern using conventional imaging modalities, such as computed tomography. Synchrotron-radiation phase-contrast imaging (SR-PCI) is a non-destructive imaging modality that has been shown to produce excellent visualization of soft tissue structures without the need for extensive sample preparation. The objectives of the investigation were to firstly use SR-PCI to create and evaluate a biomechanical FE model of the human middle ear that includes all soft tissue structures, and secondly, to investigate how modelling assumptions and simplifications of ligament representations affect the simulated biomechanical response of the FE model. The FE model included the suspensory ligaments, ossicular chain, tympanic membrane, the incudostapedial and incudomalleal joints, and the ear canal. Frequency responses obtained from the SR-PCI-based FE model agreed well with published laser doppler vibrometer measurements on cadaveric samples. Revised models with exclusion of the superior malleal ligament (SML), simplification of the SML, and modification of the stapedial annular ligament were studied, as these revised models represented modelling assumptions that have been made in literature.


Subject(s)
Percutaneous Coronary Intervention , Synchrotrons , Humans , Finite Element Analysis , Ear, Middle/diagnostic imaging , Ear, Middle/physiology , Stapes/physiology
15.
Laryngoscope ; 133(1): 38-42, 2023 01.
Article in English | MEDLINE | ID: mdl-35102548

ABSTRACT

OBJECTIVES/HYPOTHESIS: Nasopharyngeal swabs currently remain the gold standard for COVID-19 sample collection. A surge in testing volume has resulted in a large number of health care workers who are unfamiliar with nasal anatomy performing this test, which can lead to improper collection practices culminating in false-negative results and complications. Therefore, we aimed to assess the accuracy and educational potential of a realistic 3D-printed nasal swab simulator to expedite health care workers' skill acquisition. STUDY DESIGN: Prospective pre-post interventional study. METHODS: A nasal swab task trainer (NSTT) was developed to scale from computed tomography data with a deviated septum. Frontline workers at COVID-19 testing sites in Ontario, Canada, were recruited to use the NSTT for nasopharyngeal swab training. Integrated video recording capability allowed participants to self-evaluate procedure accuracy. A five-point Likert scale was collected regarding the NSTT's educational value and procedural fidelity. RESULTS: Sixty-two frontline workers included in the study were primarily registered nurses (52%) or paramedics (16%). Following simulator use, self-assessed accuracy improved in 77% of all participants and 100% of participants who expressed low confidence before training. Ninety-four percent reported that the NSTT provided a complete educational experience, and 82% regarded the system as a more effective training approach than what is currently available. Eighty-one indicated that the simulator should be used at all COVID-19 testing sites, with 77% stating province-wide implementation was warranted. CONCLUSIONS: The nasal swab task trainer is an effective educational tool that appears well-suited for improved skill acquisition in COVID-19 testing and may be useful for training other nasal swab applications. LEVEL OF EVIDENCE: 3 Laryngoscope, 133:38-42, 2023.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Prospective Studies , Ontario , Nasopharynx
16.
Laryngoscope ; 133(12): 3540-3547, 2023 12.
Article in English | MEDLINE | ID: mdl-37078508

ABSTRACT

OBJECTIVE: Comparison of acute speech recognition for cochlear implant (CI) alone and electric-acoustic stimulation (EAS) users listening with default maps or place-based maps using either a spiral ganglion (SG) or a new Synchrotron Radiation-Artificial Intelligence (SR-AI) frequency-to-place function. METHODS: Thirteen adult CI-alone or EAS users completed a task of speech recognition at initial device activation with maps that differed in the electric filter frequency assignments. The three map conditions were: (1) maps with the default filter settings (default map), (2) place-based maps with filters aligned to cochlear SG tonotopicity using the SG function (SG place-based map), and (3) place-based maps with filters aligned to cochlear Organ of Corti (OC) tonotopicity using the SR-AI function (SR-AI place-based map). Speech recognition was evaluated using a vowel recognition task. Performance was scored as the percent correct for formant 1 recognition due to the rationale that the maps would deviate the most in the estimated cochlear place frequency for low frequencies. RESULTS: On average, participants had better performance with the OC SR-AI place-based map as compared to the SG place-based map and the default map. A larger performance benefit was observed for EAS users than for CI-alone users. CONCLUSION: These pilot data suggest that EAS and CI-alone users may experience better performance with a patient-centered mapping approach that accounts for the variability in cochlear morphology (OC SR-AI frequency-to-place function) in the individualization of the electric filter frequencies (place-based mapping procedure). LEVEL OF EVIDENCE: 3 Laryngoscope, 133:3540-3547, 2023.


Subject(s)
Cochlear Implantation , Cochlear Implants , Speech Perception , Adult , Humans , Artificial Intelligence , Cochlea/anatomy & histology , Acoustic Stimulation/methods
17.
Oper Neurosurg (Hagerstown) ; 23(6): 505-513, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36227206

ABSTRACT

BACKGROUND: Virtual reality simulation has gained prominence as a valuable surgical rehearsal and education tool in neurosurgery. Approaches to the internal auditory canal, cerebellopontine angle, and ventral brainstem region using the middle cranial fossa are not well explored by simulation. OBJECTIVE: We hope to contribute to this paucity in simulation tools devoted to the lateral skull base, specifically the middle cranial fossa approach. METHODS: Eight high-resolution microcomputed tomography scans of human cadavers were used as volumetric data sets to construct a high-fidelity visual and haptic rendering of the middle cranial fossa using CardinalSim software. Critical neurovascular structures related to this region of the skull base were segmented and incorporated into the modules. RESULTS: The virtual models illustrate the 3-dimensional anatomic relationships of neurovascular structures in the middle cranial fossa and allow a realistic interactive drilling environment. This is facilitated by the ability to render bone opaque or transparent to reveal the proximity to critical anatomy allowing for practice of the virtual dissection in a graduated fashion. CONCLUSION: We have developed a virtual library of middle cranial fossa approach models, which integrate relevant neurovascular structures with aims to improve surgical training and education. A ready extension is the potential for patient-specific application and pathology.


Subject(s)
Cranial Fossa, Middle , Virtual Reality , Humans , Cranial Fossa, Middle/surgery , Cranial Fossa, Middle/anatomy & histology , X-Ray Microtomography , Petrous Bone/surgery , Computer Simulation
18.
Comput Methods Programs Biomed ; 226: 107118, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36122495

ABSTRACT

BACKGROUND: The application of machine learning algorithms for assessing the auditory brainstem response has gained interest over recent years with a considerable number of publications in the literature. In this systematic review, we explore how machine learning has been used to develop algorithms to assess auditory brainstem responses. A clear and comprehensive overview is provided to allow clinicians and researchers to explore the domain and the potential translation to clinical care. METHODS: The systematic review was performed based on PRISMA guidelines. A search was conducted of PubMed, IEEE-Xplore, and Scopus databases focusing on human studies that have used machine learning to assess auditory brainstem responses. The duration of the search was from January 1, 1990, to April 3, 2021. The Covidence systematic review platform (www.covidence.org) was used throughout the process. RESULTS: A total of 5812 studies were found through the database search and 451 duplicates were removed. The title and abstract screening process further reduced the article count to 89 and in the proceeding full-text screening, 34 articles met our full inclusion criteria. CONCLUSION: Three categories of applications were found, namely neurologic diagnosis, hearing threshold estimation, and other (does not relate to neurologic or hearing threshold estimation). Neural networks and support vector machines were the most commonly used machine learning algorithms in all three categories. Only one study had conducted a clinical trial to evaluate the algorithm after development. Challenges remain in the amount of data required to train machine learning models. Suggestions for future research avenues are mentioned with recommended reporting methods for researchers.


Subject(s)
Algorithms , Machine Learning , Humans , Brain Stem , Databases, Factual , Evoked Potentials, Auditory, Brain Stem
19.
Sci Rep ; 12(1): 18508, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347918

ABSTRACT

The human inner ear contains minute three-dimensional neurosensory structures that are deeply embedded within the skull base, rendering them relatively inaccessible to regenerative therapies for hearing loss. Here we provide a detailed characterisation of the functional architecture of the space that hosts the cell bodies of the auditory nerve to make them safely accessible for the first time for therapeutic intervention. We used synchrotron phase-contrast imaging which offers the required microscopic soft-tissue contrast definition while simultaneously displaying precise bony anatomic detail. Using volume-rendering software we constructed highly accurate 3-dimensional representations of the inner ear. The cell bodies are arranged in a bony helical canal that spirals from the base of the cochlea to its apex; the canal volume is 1.6 µL but with a diffusion potential of 15 µL. Modelling data from 10 temporal bones enabled definition of a safe trajectory for therapeutic access while preserving the cochlea's internal architecture. We validated the approach through surgical simulation, anatomical dissection and micro-radiographic analysis. These findings will facilitate future clinical trials of novel therapeutic interventions to restore hearing.


Subject(s)
Ear, Inner , Humans , Ear, Inner/diagnostic imaging , Ear, Inner/surgery , Temporal Bone , Cochlea/diagnostic imaging , Cochlea/surgery , Cochlear Nerve , Synchrotrons
20.
Otol Neurotol ; 42(6): e658-e665, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34111048

ABSTRACT

HYPOTHESIS: Measuring the length of the basilar membrane (BM) in the cochlear hook region will result in improved accuracy of cochlear duct length (CDL) measurements. BACKGROUND: Cochlear implant pitch mapping is generally performed in a patient independent approach, which has been shown to result in place-pitch mismatches. In order to customize cochlear implant pitch maps, accurate CDL measurements must be obtained. CDL measurements generally begin at the center of the round window (RW) and ignore the basal-most portion of the BM in the hook region. Measuring the size and morphology of the BM in the hook region can improve CDL measurements and our understanding of cochlear tonotopy. METHODS: Ten cadaveric human cochleae underwent synchrotron radiation phase-contrast imaging. The length of the BM through the hook region and CDL were measured. Two different CDL measurements were obtained for each sample, with starting points at the center of the RW (CDLRW) and the basal-most tip of the BM (CDLHR). Regression analysis was performed to relate CDLRW to CDLHR. A three-dimensional polynomial model was determined to describe the average BM hook region morphology. RESULTS: The mean CDLRW value was 33.03 ±â€Š1.62 mm, and the mean CDLHR value was 34.68 ±â€Š1.72 mm. The following relationship was determined between CDLRW and CDLHR: CDLHR  = 1.06(CDLRW)-0.26 (R2  = 0.99). CONCLUSION: The length and morphology of the hook region was determined. Current measurements underestimate CDL in the hook region and can be corrected using the results herein.


Subject(s)
Cochlear Implantation , Cochlear Implants , Cochlea/diagnostic imaging , Cochlear Duct/surgery , Humans , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL