Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Waste Manag Res ; 41(1): 3-17, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35652693

ABSTRACT

Healthcare generates large amounts of waste, harming both environmental and human health. Waste audits are the standard method for measuring and characterizing waste. This is a systematic review of healthcare waste audits, describing their methods and informing more standardized auditing and reporting. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched MEDLINE, Embase, Inspec, Scopus and Web of Science Core Collection databases for published studies involving direct measurement of waste in medical facilities. We screened 2398 studies, identifying 156 studies for inclusion from 37 countries. Most were conducted to improve local waste sorting policies or practices, with fewer to inform policy development, increase waste diversion or reduce costs. Measurement was quantified mostly by weighing waste, with many also counting items or using interviews or surveys to compile data. Studies spanned single procedures, departments and hospitals, and multiple hospitals or health systems. Waste categories varied, with most including municipal solid waste or biohazardous waste, and others including sharps, recycling and other wastes. There were significant differences in methods and results between high- and low-income countries. The number of healthcare waste audits published has been increasing, with variable quality and general methodologic inconsistency. A greater emphasis on consistent performance and reporting standards would improve the quality, comparability and usefulness of healthcare waste audits.


Subject(s)
Delivery of Health Care , Hospitals , Humans
2.
ACS Appl Nano Mater ; 2(8): 4773-4781, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-32577609

ABSTRACT

Elucidating the kinetics of DNA passage through a solid-state nanopore is a fertile field of research, and mechanisms for controlling capture, passage, and trapping of biopolymers are likely to find numerous technological applications. Here we present a nanofiltered nanopore device, which forms an entropic cage for DNA following first passage through the nanopore, trapping the translocated DNA and permitting recapture for subsequent reanalysis and investigation of kinetics of passage under confinement. We characterize the trapping properties of this nanodevice by driving individual DNA polymers into the nanoscale gap separating the nanofilter and the pore, forming an entropic cage similar to a "two pores in series" device, leaving polymers to diffuse in the cage for various time lengths, and attempting to recapture the same molecule. We show that the cage results in effectively permanent trapping when the radius of gyration of the target polymer is significantly larger than the radii of the pores in the nanofilter. We also compare translocation dynamics as a function of translocation direction in order to study the effects of confinement on DNA just prior to translocation, providing further insight into the nanopore translocation process. This nanofiltered nanopore device realizes simple fabrication of a femtoliter nanoreactor in which to study fundamental biophysics and biomolecular reactions on the single-molecule level. The device provides an electrically-permeable single-molecule trap with a higher entropic barrier to escape than previous attempts to fabricate similar structures.

SELECTION OF CITATIONS
SEARCH DETAIL