Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Genomics ; 25(1): 742, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080521

ABSTRACT

The anthrax-causing bacterium Bacillus anthracis comprises the genetic clades A, B, and C. In the northernmost part (Pafuri) of Kruger National Park (KNP), South Africa, both the common A and rare B strains clades occur. The B clade strains were reported to be dominant in Pafuri before 1991, while A clade strains occurred towards the central parts of KNP. The prevalence of B clade strains is currently much lower as only A clade strains have been isolated from 1992 onwards in KNP. In this study 319 B. anthracis strains were characterized with 31-loci multiple-locus variable-number tandem repeat analysis (MLVA-31). B clade strains from soil (n = 9) and a Tragelaphus strepsiceros carcass (n = 1) were further characterised by whole genome sequencing and compared to publicly available genomes. The KNP strains clustered in the B clade before 1991 into two dominant genotypes. South African strains cluster into a dominant genotype A.Br.005/006 consisting of KNP as well as the other anthrax endemic region, Northern Cape Province (NCP), South Africa. A few A.Br.001/002 strains from both endemic areas were also identified. Subclade A.Br.101 belonging to the A.Br.Aust94 lineage was reported in the NCP. The B-clade strains seems to be vanishing, while outbreaks in South Africa are caused mainly by the A.Br.005/006 genotypes as well as a few minor clades such as A.Br.001/002 and A.Br.101 present in NCP. This work confirmed the existence of the rare and vanishing B-clade strains that group in B.Br.001 branch with KrugerB and A0991 KNP strains.


Subject(s)
Anthrax , Bacillus anthracis , Phylogeny , Bacillus anthracis/genetics , Bacillus anthracis/classification , Bacillus anthracis/isolation & purification , South Africa , Anthrax/microbiology , Anthrax/epidemiology , Anthrax/veterinary , Genotype , Genome, Bacterial , Soil Microbiology , Whole Genome Sequencing
2.
Parasitol Res ; 123(8): 292, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102116

ABSTRACT

Ticks are blood ectoparasites that feed on domestic, wild animals and humans. They spread a variety of infections such as protozoa, viruses, and bacteria. Moreover, cattle reared by smallholder farmers are susceptible to ticks and tick-borne pathogens. Therefore, accurate identification of ticks and detection of tick-borne pathogens is crucial. The main aim of this study was to identify and characterize ticks and tick-borne pathogens from selected villages in Greater Letaba Municipality, Limpopo Province, using morphological and molecular techniques. A total of 233 ticks were collected from cattle and identified morphologically using appropriate morphological keys. The following tick species were identified: Amblyomma hebraeum, Hyalomma rufipes, Hyalomma truncatum, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi, and Rhipicephalus sanguineus. Rhipicephalus spp. was the most common species accounting to 73.8% of the identified ticks. The genomic DNA was extracted from the whole tick for tick identification and from midguts of the ticks for the detection of tick-borne pathogens, followed by amplification and sequencing. A total of 27 samples were positive for tick-borne pathogens: 23 samples tested positive for Theileria and four samples tested positive for Ehrlichia. Anaplasma and Rickettsial OmpB could not be detected from any of the samples. There was no obvious grouping of ticks and tick-borne pathogens on the bases of their locality. The findings of this study confirm previous reports that indicated that cattle reared by smallholder farmers harbor various ticks and tick-borne pathogens of veterinary, public health, and economic importance. Regular monitoring of tick infestations in villages around the study areas is recommended to avoid disease outbreaks.


Subject(s)
Cattle Diseases , Tick Infestations , Tick-Borne Diseases , Animals , Cattle , South Africa/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Genotype , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ehrlichia/classification , Anaplasma/isolation & purification , Anaplasma/genetics , Anaplasma/classification , Ixodidae/microbiology , Ixodidae/parasitology , Theileria/isolation & purification , Theileria/genetics , Theileria/classification , Female , Ticks/microbiology , Ticks/parasitology , Male
3.
Vet Parasitol Reg Stud Reports ; 55: 101105, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39326961

ABSTRACT

Ticks are arachnid blood-feeding parasites, which infest livestock, wildlife, and humans, transmitting medically and veterinary significant pathogens. Their biodiversity and distribution in wild animals remains complex. This study analysed archived tick samples (n = 48) from the South African Biodiversity Institute (SANBI) Wildlife Biobank utilizing morphology and genetic analyses of the 16S rRNA and COI (DNA barcoding) mitochondrial genes to identify ticks collected among 13 vertebratesavian, reptilian, and mammalian host species. The specimens came from nine localities including nature reserves and captive facilities (zoological garden) in South Africa, Namibia, and Botswana. These ticks were also assessed for associated pathogens with the reverse line blot (RLB) hybridization assay. Seven tick genera, Amblyomma, Hyalomma, Haemaphysalis, Ixodes, Rhipicephalus, Rhipicentor, and Otobius were identified, with Amblyomma being the most prevalent (22.9 %) in our sample set. Obtained sequences were 95-100 % similar to published records of tick species collected from wild and domestic animals, as well as those collected from vegetation, from different southern African areas. However, tick specimens (n = 3) identified morphologically as Hyalomma truncatum, Rhipicephalus e. evertsi, and R. simus, were, on a molecularly level, more closely related to their sister taxa (H. glabrum, R. e. mimeticus, and R. gertrudae, respectively) suggesting a need for taxonomic verification. With the RLB hybridization assay, six samples reacted with the Ehrlichia/Anaplasma genus-specific probe, while two reacted with the Theileria/Babesia genus-specific probe. Sequencing of the RLB amplicons targeting the 18S rRNA gene (n = 2) indicated 100 % similarity to Hepatozoon fitzsimonsi, while one was closely related to He. ingwe with 99.39 % similarity. The results show that wildlife harbour different tick species, and pathogen detection identified novel genotypes, indicating wildlife as potential pathogens reservoirs. This study enhances our understanding of tick biodiversity, distribution and highlights wildlife's role in harbouring diverse tick species and novel pathogens.


Subject(s)
Animals, Wild , RNA, Ribosomal, 16S , Tick Infestations , Tick-Borne Diseases , Ticks , Animals , South Africa/epidemiology , Animals, Wild/parasitology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , RNA, Ribosomal, 16S/analysis , Ticks/parasitology , Ticks/microbiology , Phylogeny , Female , DNA Barcoding, Taxonomic/veterinary , Animals, Zoo/parasitology
4.
Microorganisms ; 9(3)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799545

ABSTRACT

The availability of whole genome sequences in public databases permits genome-wide comparative studies of various bacterial species. Whole genome sequence-single nucleotide polymorphisms (WGS-SNP) analysis has been used in recent studies and allows the discrimination of various Brucella species and strains. In the present study, 13 Brucella spp. strains from cattle of various locations in provinces of South Africa were typed and discriminated. WGS-SNP analysis indicated a maximum pairwise distance ranging from 4 to 77 single nucleotide polymorphisms (SNPs) between the South African Brucella abortus virulent field strains. Moreover, it was shown that the South African B. abortus strains grouped closely to B. abortus strains from Mozambique and Zimbabwe, as well as other Eurasian countries, such as Portugal and India. WGS-SNP analysis of South African B. abortus strains demonstrated that the same genotype circulated in one farm (Farm 1), whereas another farm (Farm 2) in the same province had two different genotypes. This indicated that brucellosis in South Africa spreads within the herd on some farms, whereas the introduction of infected animals is the mode of transmission on other farms. Three B. abortus vaccine S19 strains isolated from tissue and aborted material were identical, even though they originated from different herds and regions of South Africa. This might be due to the incorrect vaccination of animals older than the recommended age of 4-8 months or might be a problem associated with vaccine production.

5.
PLoS Negl Trop Dis ; 13(5): e0007311, 2019 05.
Article in English | MEDLINE | ID: mdl-31107864

ABSTRACT

Brucella abortus and B. melitensis have been reported in several studies in animals in Zimbabwe but the extent of the disease remains poorly known. Thus, characterizing the circulating strains is a critical first step in understanding brucellosis in the country. In this study we used an array of molecular assays including AMOS-PCR, Bruce-ladder, multiple locus variable number tandem repeats analysis (MLVA) and single nucleotide polymorphisms from whole genome sequencing (WGS-SNP) to characterize Brucella isolates to the species, biovar, and individual strain level. Sixteen Brucella strains isolated in Zimbabwe at the Central Veterinary laboratory from various hosts were characterized using all or some of these assays. The strains were identified as B. ovis, B. abortus, B. canis and B. suis, with B. canis being the first report of this species in Zimbabwe. Zimbabwean strains identified as B. suis and B. abortus were further characterized with whole genome sequencing and were closely related to reference strains 1330 and 86/8/59, respectively. We demonstrate the range of different tests that can be performed from simple assays that can be run in laboratories lacking sophisticated instrumentation to whole genome analyses that currently require substantial expertise and infrastructure often not available in the developing world.


Subject(s)
Brucella abortus/genetics , Brucella melitensis/genetics , Brucellosis/veterinary , Animals , Brucella abortus/classification , Brucella abortus/isolation & purification , Brucella melitensis/classification , Brucella melitensis/isolation & purification , Cattle , Cattle Diseases/microbiology , Genome, Bacterial , Genotype , Minisatellite Repeats , Phylogeny , Sheep , Sheep Diseases/microbiology , Swine , Swine Diseases/microbiology , Zimbabwe
SELECTION OF CITATIONS
SEARCH DETAIL