Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(5): 1278-1295.e20, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38387457

ABSTRACT

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.


Subject(s)
Metabolic Engineering , T-Lymphocytes , Humans , Gene Expression Profiling , Metabolic Engineering/methods , RNA , Transcriptome
2.
Cell ; 181(4): 865-876.e12, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32353252

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , CRISPR-Cas Systems , Influenza A Virus, H1N1 Subtype/drug effects , RNA, Viral/antagonists & inhibitors , A549 Cells , Antibiotic Prophylaxis/methods , Base Sequence , Betacoronavirus/genetics , Betacoronavirus/growth & development , COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , Computer Simulation , Conserved Sequence , Coronavirus/drug effects , Coronavirus/genetics , Coronavirus/growth & development , Coronavirus Infections/drug therapy , Coronavirus Nucleocapsid Proteins , Coronavirus RNA-Dependent RNA Polymerase , Epithelial Cells/virology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/growth & development , Lung/pathology , Lung/virology , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Phylogeny , Pneumonia, Viral/drug therapy , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
3.
Cell ; 175(5): 1405-1417.e14, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30318144

ABSTRACT

Programmable control of spatial genome organization is a powerful approach for studying how nuclear structure affects gene regulation and cellular function. Here, we develop a versatile CRISPR-genome organization (CRISPR-GO) system that can efficiently control the spatial positioning of genomic loci relative to specific nuclear compartments, including the nuclear periphery, Cajal bodies, and promyelocytic leukemia (PML) bodies. CRISPR-GO is chemically inducible and reversible, enabling interrogation of real-time dynamics of chromatin interactions with nuclear compartments in living cells. Inducible repositioning of genomic loci to the nuclear periphery allows for dissection of mitosis-dependent and -independent relocalization events and also for interrogation of the relationship between gene position and gene expression. CRISPR-GO mediates rapid de novo formation of Cajal bodies at desired chromatin loci and causes significant repression of endogenous gene expression over long distances (30-600 kb). The CRISPR-GO system offers a programmable platform to investigate large-scale spatial genome organization and function.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Genome , Abscisic Acid/pharmacology , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Coiled Bodies/genetics , Gene Expression Regulation , Genetic Loci , Humans , In Situ Hybridization, Fluorescence , S Phase Cell Cycle Checkpoints/drug effects
4.
Annu Rev Biochem ; 85: 227-64, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27145843

ABSTRACT

The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Repair , Endonucleases/genetics , Gene Editing/methods , RNA, Guide, Kinetoplastida/genetics , Bacterial Proteins/metabolism , Base Pairing , CRISPR-Associated Protein 9 , DNA Cleavage , Endonucleases/metabolism , Epigenesis, Genetic , Gene Targeting , Genome, Human , Humans , Molecular Imaging , Protein Engineering , Protein Structure, Secondary , RNA, Guide, Kinetoplastida/metabolism
6.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27238023

ABSTRACT

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Subject(s)
Bacillus subtilis/genetics , Genes, Bacterial , Genes, Essential , CRISPR-Cas Systems , Gene Knockdown Techniques , Gene Library , Gene Regulatory Networks , Molecular Targeted Therapy
7.
Mol Cell ; 83(3): 442-451, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736311

ABSTRACT

The Central Dogma of the flow of genetic information is arguably the crowning achievement of 20th century molecular biology. Reversing the flow of information from RNA to DNA or chromatin has come to the fore in recent years, from the convergence of fundamental discoveries and synthetic biology. Inspired by the example of long noncoding RNAs (lncRNAs) in mammalian genomes that direct chromatin modifications and gene expression, synthetic biologists have repurposed prokaryotic RNA-guided genome defense systems such as CRISPR to edit eukaryotic genomes and epigenomes. Here we explore the parallels of these two fields and highlight opportunities for synergy and future breakthroughs.


Subject(s)
Gene Editing , RNA, Long Noncoding , Animals , DNA/genetics , Epigenesis, Genetic , Chromatin/genetics , RNA, Long Noncoding/genetics , CRISPR-Cas Systems/genetics , Mammals/metabolism
8.
Cell ; 160(1-2): 339-50, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25533786

ABSTRACT

Eukaryotic cells execute complex transcriptional programs in which specific loci throughout the genome are regulated in distinct ways by targeted regulatory assemblies. We have applied this principle to generate synthetic CRISPR-based transcriptional programs in yeast and human cells. By extending guide RNAs to include effector protein recruitment sites, we construct modular scaffold RNAs that encode both target locus and regulatory action. Sets of scaffold RNAs can be used to generate synthetic multigene transcriptional programs in which some genes are activated and others are repressed. We apply this approach to flexibly redirect flux through a complex branched metabolic pathway in yeast. Moreover, these programs can be executed by inducing expression of the dCas9 protein, which acts as a single master regulatory control point. CRISPR-associated RNA scaffolds provide a powerful way to construct synthetic gene expression programs for a wide range of applications, including rewiring cell fates or engineering metabolic pathways.


Subject(s)
CRISPR-Cas Systems , Gene Expression , Genetic Techniques , HEK293 Cells , Humans , Metabolic Engineering , RNA, Guide, Kinetoplastida/genetics , Saccharomyces cerevisiae/genetics , Streptococcus pyogenes/genetics
9.
Cell ; 159(3): 635-46, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25307933

ABSTRACT

Signals in many biological processes can be amplified by recruiting multiple copies of regulatory proteins to a site of action. Harnessing this principle, we have developed a protein scaffold, a repeating peptide array termed SunTag, which can recruit multiple copies of an antibody-fusion protein. We show that the SunTag can recruit up to 24 copies of GFP, thereby enabling long-term imaging of single protein molecules in living cells. We also use the SunTag to create a potent synthetic transcription factor by recruiting multiple copies of a transcriptional activation domain to a nuclease-deficient CRISPR/Cas9 protein and demonstrate strong activation of endogenous gene expression and re-engineered cell behavior with this system. Thus, the SunTag provides a versatile platform for multimerizing proteins on a target protein scaffold and is likely to have many applications in imaging and controlling biological outputs.


Subject(s)
Molecular Imaging/methods , Optical Imaging/methods , Protein Multimerization , Proteins/chemistry , Animals , CRISPR-Cas Systems , Genetic Techniques , Humans , Single-Chain Antibodies/chemistry
10.
Cell ; 159(3): 647-61, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25307932

ABSTRACT

While the catalog of mammalian transcripts and their expression levels in different cell types and disease states is rapidly expanding, our understanding of transcript function lags behind. We present a robust technology enabling systematic investigation of the cellular consequences of repressing or inducing individual transcripts. We identify rules for specific targeting of transcriptional repressors (CRISPRi), typically achieving 90%-99% knockdown with minimal off-target effects, and activators (CRISPRa) to endogenous genes via endonuclease-deficient Cas9. Together they enable modulation of gene expression over a ∼1,000-fold range. Using these rules, we construct genome-scale CRISPRi and CRISPRa libraries, each of which we validate with two pooled screens. Growth-based screens identify essential genes, tumor suppressors, and regulators of differentiation. Screens for sensitivity to a cholera-diphtheria toxin provide broad insights into the mechanisms of pathogen entry, retrotranslocation and toxicity. Our results establish CRISPRi and CRISPRa as powerful tools that provide rich and complementary information for mapping complex pathways.


Subject(s)
CRISPR-Cas Systems , Genetic Techniques , Transcription, Genetic , Cell Line , Cholera Toxin/metabolism , Diphtheria Toxin/metabolism , Genome, Human , Humans
11.
Mol Cell ; 81(20): 4287-4299.e5, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34428454

ABSTRACT

Eukaryotic chromosomes feature large regions of compact, repressed heterochromatin hallmarked by Heterochromatin Protein 1 (HP1). HP1 proteins play multi-faceted roles in shaping heterochromatin, and in cells, HP1 tethering to individual gene promoters leads to epigenetic modifications and silencing. However, emergent properties of HP1 at supranucleosomal scales remain difficult to study in cells because of a lack of appropriate tools. Here, we develop CRISPR-engineered chromatin organization (EChO), combining live-cell CRISPR imaging with inducible large-scale recruitment of chromatin proteins to native genomic targets. We demonstrate that human HP1α tiled across kilobase-scale genomic DNA form novel contacts with natural heterochromatin, integrates two distantly targeted regions, and reversibly changes chromatin from a diffuse to compact state. The compact state exhibits delayed disassembly kinetics and represses transcription across over 600 kb. These findings support a polymer model of HP1α-mediated chromatin regulation and highlight the utility of CRISPR-EChO in studying supranucleosomal chromatin organization in living cells.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Chromatin Assembly and Disassembly , Chromobox Protein Homolog 5/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Heterochromatin/metabolism , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , Chromobox Protein Homolog 5/genetics , HEK293 Cells , Heterochromatin/genetics , Humans , Nucleic Acid Conformation , Protein Conformation , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Structure-Activity Relationship , Time Factors
12.
Mol Cell ; 81(20): 4333-4345.e4, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34480847

ABSTRACT

Compact and versatile CRISPR-Cas systems will enable genome engineering applications through high-efficiency delivery in a wide variety of contexts. Here, we create an efficient miniature Cas system (CasMINI) engineered from the type V-F Cas12f (Cas14) system by guide RNA and protein engineering, which is less than half the size of currently used CRISPR systems (Cas9 or Cas12a). We demonstrate that CasMINI can drive high levels of gene activation (up to thousands-fold increases), while the natural Cas12f system fails to function in mammalian cells. We show that the CasMINI system has comparable activities to Cas12a for gene activation, is highly specific, and allows robust base editing and gene editing. We expect that CasMINI can be broadly useful for cell engineering and gene therapy applications ex vivo and in vivo.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Protein Engineering , Transcriptional Activation , CRISPR-Associated Proteins/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mutation , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
13.
Nat Rev Mol Cell Biol ; 17(1): 5-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26670017

ABSTRACT

The bacterial CRISPR-Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR-dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies.


Subject(s)
CRISPR-Cas Systems/genetics , Genome , Genomics/methods , RNA Editing/genetics , Animals , Humans , Models, Genetic , Transcription, Genetic
14.
Cell ; 152(5): 1173-83, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452860

ABSTRACT

Targeted gene regulation on a genome-wide scale is a powerful strategy for interrogating, perturbing, and engineering cellular systems. Here, we develop a method for controlling gene expression based on Cas9, an RNA-guided DNA endonuclease from a type II CRISPR system. We show that a catalytically dead Cas9 lacking endonuclease activity, when coexpressed with a guide RNA, generates a DNA recognition complex that can specifically interfere with transcriptional elongation, RNA polymerase binding, or transcription factor binding. This system, which we call CRISPR interference (CRISPRi), can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects. CRISPRi can be used to repress multiple target genes simultaneously, and its effects are reversible. We also show evidence that the system can be adapted for gene repression in mammalian cells. This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale.


Subject(s)
Endodeoxyribonucleases/genetics , Escherichia coli/genetics , Gene Knockdown Techniques/methods , RNA Interference , Streptococcus pyogenes/enzymology , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Gene Expression , Streptococcus pyogenes/genetics , Transcription Elongation, Genetic , Transcription Initiation, Genetic , RNA, Small Untranslated
15.
Cell ; 155(7): 1479-91, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24360272

ABSTRACT

The spatiotemporal organization and dynamics of chromatin play critical roles in regulating genome function. However, visualizing specific, endogenous genomic loci remains challenging in living cells. Here, we demonstrate such an imaging technique by repurposing the bacterial CRISPR/Cas system. Using an EGFP-tagged endonuclease-deficient Cas9 protein and a structurally optimized small guide (sg) RNA, we show robust imaging of repetitive elements in telomeres and coding genes in living cells. Furthermore, an array of sgRNAs tiling along the target locus enables the visualization of nonrepetitive genomic sequences. Using this method, we have studied telomere dynamics during elongation or disruption, the subnuclear localization of the MUC4 loci, the cohesion of replicated MUC4 loci on sister chromatids, and their dynamic behaviors during mitosis. This CRISPR imaging tool has potential to significantly improve the capacity to study the conformation and dynamics of native chromosomes in living human cells.


Subject(s)
Genetic Techniques , Telomere , Base Sequence , Clustered Regularly Interspaced Short Palindromic Repeats , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Mitosis , Molecular Sequence Data , Mucin-4/genetics
16.
Cell ; 154(2): 442-51, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23849981

ABSTRACT

The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes. RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells.


Subject(s)
Bacterial Proteins/genetics , Gene Targeting/methods , Streptococcus pyogenes , HEK293 Cells , HeLa Cells , Humans , Saccharomyces cerevisiae/genetics , RNA, Small Untranslated
17.
Mol Cell ; 78(1): 184-191.e3, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32027839

ABSTRACT

The ability to integrate biological signals and execute a functional response when appropriate is critical for sophisticated cell engineering using synthetic biology. Although the CRISPR-Cas system has been harnessed for synthetic manipulation of the genome, it has not been fully utilized for complex environmental signal sensing, integration, and actuation. Here, we develop a split dCas12a platform and show that it allows for the construction of multi-input, multi-output logic circuits in mammalian cells. The system is highly programmable and can generate expandable AND gates with two, three, and four inputs. It can also incorporate NOT logic by using anti-CRISPR proteins as an OFF switch. By coupling the split dCas12a design to multiple tumor-relevant promoters, we provide a proof of concept that the system can implement logic gating to specifically detect breast cancer cells and execute therapeutic immunomodulatory responses.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Cell Engineering , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Cell Line, Tumor , Dimerization , Female , HEK293 Cells , Humans , Transcriptional Activation
18.
Nat Rev Genet ; 22(6): 343-360, 2021 06.
Article in English | MEDLINE | ID: mdl-33558716

ABSTRACT

Cancers and developmental disorders are associated with alterations in the 3D genome architecture in space and time (the fourth dimension). Mammalian 3D genome organization is complex and dynamic and plays an essential role in regulating gene expression and cellular function. To study the causal relationship between genome function and its spatio-temporal organization in the nucleus, new technologies for engineering and manipulating the 3D organization of the genome have been developed. In particular, CRISPR-Cas technologies allow programmable manipulation at specific genomic loci, enabling unparalleled opportunities in this emerging field of 3D genome engineering. We review advances in mammalian 3D genome engineering with a focus on recent manipulative technologies using CRISPR-Cas and related technologies.


Subject(s)
CRISPR-Cas Systems , Cell Nucleus/genetics , Gene Editing , Genetic Engineering/methods , Genome , Genomics/methods , Animals , Humans
19.
Mol Cell ; 75(2): 206-208, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348878

ABSTRACT

Discoveries by Klompe et al. (2019) and Strecker et al. (2019) elucidate distinct CRISPR-Cas mechanisms for site-specific programmable transposition in prokaryotic organisms.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA , RNA , Transposases
20.
Mol Cell ; 74(3): 622-633.e4, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051141

ABSTRACT

The control of gene expression by transcription factor binding sites frequently determines phenotype. However, it is difficult to determine the function of single transcription factor binding sites within larger transcription networks. Here, we use deactivated Cas9 (dCas9) to disrupt binding to specific sites, a method we term CRISPRd. Since CRISPR guide RNAs are longer than transcription factor binding sites, flanking sequence can be used to target specific sites. Targeting dCas9 to an Oct4 site in the Nanog promoter displaced Oct4 from this site, reduced Nanog expression, and slowed division. In contrast, disrupting the Oct4 binding site adjacent to Pax6 upregulated Pax6 transcription and disrupting Nanog binding its own promoter upregulated its transcription. Thus, we can easily distinguish between activating and repressing binding sites and examine autoregulation. Finally, multiple guide RNA expression allows simultaneous inhibition of multiple binding sites, and conditionally destabilized dCas9 allows rapid reversibility.


Subject(s)
CRISPR-Cas Systems/genetics , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics , PAX6 Transcription Factor/genetics , Animals , Binding Sites/genetics , CRISPR-Associated Protein 9/genetics , Gene Expression Regulation/genetics , Gene Regulatory Networks , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/genetics , Transcription Factors/genetics , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL