Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Environ Sci Health B ; 58(7): 539-553, 2023.
Article in English | MEDLINE | ID: mdl-37493233

ABSTRACT

This paper evaluates linear and nonlinear regression analysis to describe the empirical adsorption kinetics using pseudo-first-order (PFO) and pseudo-second-order (PSO) models. These models have been used to characterize the performance of adsorbents for environmental remediation and environmental modeling. Data were simulated using the PFO and PSO models with 1, 2, and 5% noise levels and fitted by nonlinear and linearized PFO and PSO equations. Nonlinear regression analysis provided rate constants and adsorption capacities with better accuracy than linearization. Besides the correlation coefficient, Chi-square and residual plot analysis helped choose the proper model to describe the adsorbent efficiency and validate the results. Both models and the NLR fitting were employed to reevaluate data obtained in our research group, including the adsorption of Hg(II) on thiol-modified vermiculite, glyphosate on soils rich in aluminum and iron oxides, phosphate on Fe(III) polyhydroxy cations modified montmorillonite, and paraquat on soil and vermiculite. While fitting the simulated data indicates an unequivocal and correct kinetic model, fitting the experimental data is not straightforward, suggesting mixed models rule the adsorption and that a large number of data points, especially at the initial steps of adsorption, provided by high throughput analysis, help to improve the kinetic modeling.


Subject(s)
Ferric Compounds , Water Pollutants, Chemical , Kinetics , Adsorption , Soil , Regression Analysis
2.
Heliyon ; 6(4): e03868, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32373749

ABSTRACT

Since phosphate is strongly related to eutrophication of environmental waters, several research groups quest for materials that can efficiently remove phosphate from wastewaters before it contaminates lakes and reservoirs. In the present work, a commercial clay mineral (K10 montmorillonite) modified with Fe3+ polyhydroxy cations was investigated as an adsorbent for phosphate. The incorporation of the polycations did not alter the main conformational characteristics of the montmorillonite, as verified by specific surface area measurements, X-ray diffractometry, FTIR, electron microscopy, and zeta potential titrations. On the other hand, the materials supporting Fe3+ polyhydroxy cations exhibited a significant enhancement of adsorption capacity, as determined by Langmuir-Freundlich isotherms, from 39 ± 2 to 104 ± 15 µmol g-1. The different ratios of OH- to Fe3+ did not affect the adsorption capacities. The adsorption kinetics was best described by the pseudo 2nd order model, approaching the equilibrium after 120 min of contact time. A variation of pH between 4.6 and 8.5 did not affect the adsorption percentages. The adsorption capacities increased with the increase of the ionic strength, thus suggesting that the formation of inner-sphere complexes prevails over electrostatic interactions as the adsorption mechanism. The materials removed phosphate from three polluted water samples having phosphate concentrations between 0.0919 and 1.211 mg L-1. The remaining phosphate concentration was below the limit of quantification of the analytical method (0.063 mg L-1 in P, or 2.0 µmol L-1). The presence of 10 mg L-1 humic of fulvic acid did not affect the performance of the materials. In conclusion, the modification of clay minerals with Fe3+ polyhydroxy cations is useful in producing low-cost adsorbents for phosphate.

SELECTION OF CITATIONS
SEARCH DETAIL