Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Transbound Emerg Dis ; 69(5): e2341-e2350, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35488872

ABSTRACT

Climate change will expose the food-producing sector to a range of challenges. Inland aquaculture farms are particularly vulnerable, due to the difficulty in changing their location, and therefore require specific tools to predict the influence of direct and indirect effects on production, environment and economic feasibility. The objective of our study was to apply a simple set of models to produce a set of growth, risk and suitability maps for stakeholders within the common carp sector in Poland, to assist decision-making under two different scenarios of climate change: a moderate situation (RCP 4.5) and an extreme situation (RCP 8.5). We used present (2000-2019) and future projections (2080-2099) for water surface temperature based on land surface temperature data from regionally downscaled climate models to draw maps to: (i) show optimal temperature conditions for carp growth, (ii) assess risk of disease outbreak caused by three important common carp pathogens: Cyprinid herpesvirus 3 (CyHV-3), carp oedema virus (CEV) and spring viremia of carp (SVCV) and (iii) predict potential suitability changes of carp farming in Poland. The study identified areas with the most and least favourable temperature conditions for carp growth, as well as those areas with the highest/lowest number of days with suitable temperatures for virus infection. These suitability maps showed the combined effect of direct and indirect effects of climate change projections under RCP 8.5 and RCP 4.5 scenarios. The approach applied herein will be of use worldwide for analysing the risks of temperature increase to land-based aquaculture, and the results presented are important for carp farmers in Poland and elsewhere, industry in general, and government stakeholders, to understand the direct and indirect effects of climate change on the triple bottom line of people, planet, and profit.


Subject(s)
Carps , Fish Diseases , Animals , Aquaculture , Fish Diseases/epidemiology , Humans , Temperature , Water
2.
PLoS One ; 7(10): e47349, 2012.
Article in English | MEDLINE | ID: mdl-23071793

ABSTRACT

Measurements of velocity and salinity near the mouth and head of the Espinheiro channel (Ria de Aveiro lagoon, Portugal) are used to study the local variation of physical water properties and to assess the balance, under steady conditions, between the seaward salt transport induced by river discharge and the landward dispersion induced by various mixing mechanisms. This assessment is made using data sampled during complete tidal cycles. Under the assumption that the estuarine tidal channel is laterally homogeneous and during moderate tidal periods (except for one survey), currents and salinity data were decomposed into various spatial and temporal means and their deviations. Near the channel's mouth, the main contributions to the salt transport are the terms due to freshwater discharge and the tidal correlation. Near the channel's head, this last term is less important than the density driven circulation, which is enhanced by the increase in freshwater discharge. The remaining terms, which are dependent on the deviations from the mean depth have a smaller role in the results of salt transport. The computed salt transport per unit width of a section perpendicular to the mean flow is in close agreement to the sum of the advective and dispersive terms (within or very close to 12%). An imbalance of the salt budget across the sections is observed for all the surveys. Considerations are made on how this approach can inform the management of hazardous contamination and how to use these results to best time the release of environmental flows during dry months.


Subject(s)
Rivers/chemistry , Salinity , Water Movements , Electric Conductivity , Models, Theoretical , Portugal
3.
PLoS One ; 7(5): e37343, 2012.
Article in English | MEDLINE | ID: mdl-22666349

ABSTRACT

There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD). In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m(-3)). Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.


Subject(s)
Ecosystem , Models, Theoretical , Atlantic Ocean , Atmosphere/chemistry , Chlorophyll/metabolism , Oceanography , Phytoplankton/growth & development , Wind
SELECTION OF CITATIONS
SEARCH DETAIL