Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Med Virol ; 96(1): e29372, 2024 01.
Article in English | MEDLINE | ID: mdl-38235544

ABSTRACT

Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 µM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.


Subject(s)
Biphenyl Compounds , Dicarboxylic Acids , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Animals , Dihydroorotate Dehydrogenase , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Influenza A virus/genetics , Influenza, Human/drug therapy , Influenza B virus , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Pyrimidines/pharmacology , Virus Replication , Mammals/metabolism
2.
Int Endod J ; 57(5): 549-565, 2024 May.
Article in English | MEDLINE | ID: mdl-38332717

ABSTRACT

AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.


Subject(s)
Dental Pulp , Platelet-Derived Growth Factor , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Connexin 43/metabolism , Phosphatidylinositol 3-Kinases , Receptor, Platelet-Derived Growth Factor alpha , Regeneration , Stem Cells/metabolism
3.
Nano Lett ; 23(4): 1144-1151, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36749930

ABSTRACT

Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6″ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 µm) with statistical deviation less than 4% over the 6″ emitter, demonstrating industrial-level reliability for module-scale TPV applications.

4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000453

ABSTRACT

Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.


Subject(s)
Disease Progression , Neoplasms , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Animals , Signal Transduction , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 53-59, 2024 Jan 20.
Article in Zh | MEDLINE | ID: mdl-38322539

ABSTRACT

Objective: To investigate the effects of stromal cell-derived factor 1α (SDF-1α) on the apoptosis and autophagy of chondrocytes and the underlying mechanisms. Methods: Chondrocytes were isolated from the knee joints of neonatal mice. The chondrocytes were then stimulated with 0 (the control group), 50, 100, and 200 ng/mL of SDF-1α. CCK-8 assay was performed to determine the effects of SDF-1α stimulation for 24 h, 48 h, and 72 h on the viability of the chondrocytes. Wound healing assay was conducted to determine the effects of SDF-1α stimulation for 12 h and 24 h on chondrocyte migration. The changes in the expression of Akt signaling pathway proteins in chondrocytes were determined by Western blot assay. Chondrocytes were stimulated with 0 (the control group) and 200 ng/mL of SDF-1α. Flow cytometry was performed to determine the effect of SDF-1α on the apoptosis of chondrocytes. Transmission electron microscope was used to examine the effect of SDF-1α on chondrocyte autophagy. Immunofluorescence staining assays were performed to visualize the differences in p-Akt expression and distribution in chondrocytes treated with SDF-1α. Results: Compared with the control group, findings for the experimental groups showed that SDF-1α at the concentrations of 50, 100, and 200 ng/mL did not decrease chondrocyte activity at any time point (P<0.01) and it consistently promoted chondrocyte migration at 24 h (P<0.05). Western blot results revealed that, in comparison to the control group, SDF-1α at concentrations of 50, 100, and 200 ng/mL significantly up-regulated the protein expression of p-Akt in chondrocytes, while no significant difference in Akt expression was observed. Flow cytometry demonstrated that SDF-1α could inhibit chondrocyte apoptosis (P<0.05) and transmission electron microscopic observation showed that SDF-1α promoted chondrocyte autophagy (P<0.05). Immunofluorescence staining showed that the expression of p-Akt in chondrocytes was concentrated in the perinuclear area of the cells and this expression was further enhanced in the perinuclear area of the chondrocytes after treatment with SDF-1α. Conclusion: SDF-1α inhibits chondrocyte apoptosis and promotes chondrocyte migration and autophagy through activating the Akt signaling pathway.


Subject(s)
Apoptosis , Autophagy , Chemokine CXCL12 , Chondrocytes , Animals , Mice , Chemokine CXCL12/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
6.
Plant Cell Rep ; 43(1): 4, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38117314

ABSTRACT

KEY MESSAGE: The leaf hyponasty response depends on tip-to-petiole auxin transport. This transport can happen through two parallel pathways: active trans-membrane transport mediated by PIN proteins and passive diffusion through plasmodesmata. A plant's ability to counteract potential shading by neighboring plants depends on transport of the hormone auxin. Neighbor sensing at the leaf tip triggers auxin production. Once this auxin reaches the abaxial petiole epidermis, it causes cell elongation, which leads to leaf hyponasty. Two pathways are known to contribute to this intercellular tip-to-petiole auxin movement: (i) transport facilitated by plasma membrane-localized PIN auxin transporters and (ii) diffusion enabled by plasmodesmata. We tested if these two modes of transport are arranged sequentially or in parallel. Moreover, we investigated if they are functionally linked. Mutants in which one of the two pathways is disrupted indicated that both pathways are necessary for a full hyponasty response. Visualization of PIN3-GFP and PIN7-GFP localization indicated PIN-mediated transport in parallel to plasmodesmata-mediated transport along abaxial midrib epidermis cells. We found plasmodesmata-mediated cell coupling in the pin3pin4pin7 mutant to match wild-type levels, indicating no redundancy between pathways. Similarly, PIN3, PIN4 and PIN7 mRNA levels were unaffected in a mutant with disrupted plasmodesmata pathway. Our results provide mechanistic insight on leaf hyponasty, which might facilitate the manipulation of the shade avoidance response in crops.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Plasmodesmata , Biological Transport , Membrane Transport Proteins/genetics , Indoleacetic Acids
7.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675225

ABSTRACT

SDF-1α, the most common isoform of stromal cell-derived factor 1, has shown vital effects in regulating chondrocyte proliferation, maturation, and chondrogenesis. Autophagy is a highly conserved biological process to help chondrocytes survive in harsh environments. However, the effect of SDF-1α on chondrocyte autophagy is still unknown. This study aims to investigate the effect of SDF-1α on chondrocyte autophagy and the underlying biomechanism. Transmission electron microscope assays and mRFP-GFP-LC3 adenovirus double label transfection assays were performed to detect the autophagic flux of chondrocytes. Western blots and immunofluorescence staining assays were used to detect the expression of autophagy-related proteins in chondrocytes. RNA sequencing and qPCR were conducted to assess changes in autophagy-related mRNA expression. SDF-1α upregulated the number of autophagosomes and autolysosomes in chondrocytes. It also increased the expression of autophagy-related proteins including ULK-1, Beclin-1 and LC3B, and decreased the expression of p62, an autophagy substrate protein. SDF-1α-mediated autophagy of chondrocytes required the participation of receptor CXCR4. Moreover, SDF-1α-enhanced autophagy of chondrocytes was through the inhibition of phosphorylation of mTOR signaling on the upstream of autophagy. Knockdown by siRNA and inhibition by signaling inhibitor further confirmed the importance of the CXCR4/mTOR signaling axis in SDF-1α-induced autophagy of chondrocytes. For the first time, this study elucidated that SDF-1α promotes chondrocyte autophagy through the CXCR4/mTOR signaling axis.


Subject(s)
Chemokine CXCL12 , Chondrocytes , Chondrocytes/metabolism , Chemokine CXCL12/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Receptors, CXCR4/metabolism , Autophagy/genetics
8.
Biochem Biophys Res Commun ; 636(Pt 1): 64-74, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36332484

ABSTRACT

Gap junctional intercellular communication (GJIC) is indispensable for the maintenance of physiological balance in articular cartilage. Transforming growth factor-ß3 (TGF-ß3), an important growth factor of TGF-ß superfamily, is well recognized to play a unique regulatory role in cartilage development and diseases. However, the role of TGF-ß3 in GJIC in adult chondrocytes remains elusive. This work aims to investigate the effect of TGF-ß3 on gap-junction mediated intercellular communication in chondrocytes. We first showed that TGF-ß3 could enhance the synaptic connections between chondrocytes by scanning electron microscopy (SEM) and promote the cell-to-cell communication in living chondrocytes by scrape loading/dye transfer assay. We then confirmed that TGF-ß3 enhanced cell-to-cell communication via up-regulation of connexin 43 (Cx43). We next found that TGF-ß3-enhanced GJIC required the participation of TGF-beta type I receptor ALK5 and depended on the activation of p-Smad3 signalling. Finally, through inhibitor experiments of SB525334 and SIS3, we demonstrated that TGF-ß3-induced functional GJIC in chondrocytes via the axis of ALK5/p-Smad3 signalling. Taking together, these results demonstrate a strong correlation between TGF-ß3 and GJIC in chondrocytes, which provides a new perspective on the importance of TGF-ß3 on cartilage physiology and pathobiology.


Subject(s)
Cartilage, Articular , Chondrocytes , Chondrocytes/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Transforming Growth Factor beta3/pharmacology , Transforming Growth Factor beta3/metabolism , Cell Communication , Cartilage, Articular/metabolism , Gap Junctions/metabolism
9.
Curr Microbiol ; 78(4): 1648-1655, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33651189

ABSTRACT

Phycosphere hosts the boundary of unique holobionts harboring dynamic algae-bacteria interactions. During our investigating the microbial consortia composition of phycosphere microbiota (PM) derived from diverse harmful algal blooms (HAB) dinoflagellates, a novel rod-shaped, motile and faint yellow-pigmented bacterium, designated as strain LZ-6 T, was isolated from HAB Alexandrium catenella LZT09 which produces high levels paralytic shellfish poisoning toxins. Phylogenetic analysis based on 16S rRNA gene and two housekeeping genes, rpoA and pheS sequences showed that the novel isolate shared the highest gene similarity with Marinobacter shengliensis CGMCC 1.12758 T (99.6%) with the similarity values of 99.6%, 99.9% and 98.5%, respectively. Further phylogenomic calculations of average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains LZ-6 T and the type strain of M. shengliensis were 95.9%, 96.4% and 68.5%, respectively. However, combined phenotypic and chemotaxonomic characterizations revealed that the new isolate was obviously different from the type strain of M. shengliensis. The obtained taxonomic evidences supported that strain LZ-6 T represents a novel subspecies of M. shengliensis, for which the name is proposed, Marinobacter shengliensis subsp. alexandrii subsp. nov. with the type strain LZ-6 T (= CCTCC AB 2018388TT = KCTC 72197 T). This proposal automatically creates Marinobacter shengliensis subsp. shengliensis for which the type strain is SL013A34A2T (= LMG 27740 T = CGMCC 1.12758 T).


Subject(s)
Dinoflagellida , Microbiota , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Dinoflagellida/genetics , Fatty Acids/analysis , Marinobacter , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Fish Shellfish Immunol ; 104: 222-227, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32531332

ABSTRACT

Cryptocaryon irritans is an extremely harmful ciliated obligate parasite that is responsible for large economic losses in aquaculture. C. irritans infection can cause an insect-resistant immune response in fish, and many immune cells can be observed in the local infection site. However, it is unclear whether macrophages are involved in the host defense against C. irritans infection. The Mpeg1 protein can form pores and destroy the cell membrane of invading pathogens, and is also used as a macrophage-specific marker in mammals. Therefore, a polyclonal antibody against grouper recombinant Mpeg1a was produced to mark macrophages in this study, which could recognize both isoforms of Mpeg1 (Mpeg1a/b). Immunofluorescence revealed that EcMpeg1 positive cells were mostly distributed in the head kidney and spleen in healthy grouper. Immunofluorescence and immunohistochemistry showed that the number of EcMpeg1 positive cells increased in the gills after infection with C. irritans, implying that EcMpeg1 positive cells may be involved in the process of grouper resistance against C. irritans infection.


Subject(s)
Ciliophora Infections/immunology , Ciliophora , Fish Diseases/immunology , Fish Proteins/immunology , Membrane Proteins/immunology , Perciformes/immunology , Animals , Ciliophora Infections/veterinary , Disease Resistance/immunology , Fish Proteins/genetics , Gills/immunology , Macrophages/immunology , Membrane Proteins/genetics , Perciformes/microbiology
11.
J Fish Dis ; 43(12): 1541-1552, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32924190

ABSTRACT

Cryptocaryon irritans, a pathogen model for fish mucosal immunity, causes skin mucosal and systematic humoral immune response. Where and how MHC II antigen presentation occurs in fish infected with C. irritans remain unknown. In this study, the full-length cDNA of the grouper cysteine protease CTSS was cloned. The expression distributions of six genes (CTSB, CTSL, CTSS, GILT, MHC IIA and MHC IIB) involved in MHC II antigen presentation pathway were tested. These genes were highly expressed in systematic immune tissues and skin and gill mucosal-associated immune tissues. All six genes were upregulated in skin at most time points. Five genes expected CTSS was upregulated in spleen at most time points. CTSB, CTSL and MHC IIA were upregulated in the gill and head kidney at some time points. These results indicate that the presentation of MHC II antigen intensively occurred in local infected skin and gill. Spleen, not head kidney, had the most extensive systematic antigen presentation. In skin, six genes most likely peaked at day 2, earlier than in spleen (5-7 days), marking an earlier skin antibody peak than any recorded in serum previously. This significant and earlier mucosal antigen presentation indicates that specific immune response occurs in local mucosal tissues.


Subject(s)
Bass , Ciliophora Infections/immunology , Fish Diseases/parasitology , Major Histocompatibility Complex/genetics , Animals , Antigens, Protozoan , Fish Diseases/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Gene Expression Regulation/immunology , Hymenostomatida/physiology , Immunity, Humoral , Immunity, Mucosal/genetics
12.
J Sci Food Agric ; 100(14): 5126-5135, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32469078

ABSTRACT

BACKGROUND: This study evaluated the effects of citrus extract (CE) on growth performance, plasma amino acid (AA) profiles, intestinal development and small intestine AA and peptide transporter expression levels in broilers. A total of 540 one-day-old yellow-feathered broilers were fed a basal diet without any antibiotic (control group), or a basal diet containing 10 mg kg-1 zinc bacitracin (antibiotic group), or a basal diet supplemented with 10 mg kg-1 CE (CE group). After 63 days of feeding, two broilers per pen were slaughtered to collect tissues for further analysis. RESULTS: Results showed that CE increased (P < 0.05) the final body weight and average daily gain from day 1 to 63, and decreased (P < 0.05) the feed/gain ratio from day 1 to 63. Dietary CE supplementation increased (P < 0.05) plasma total protein, albumin and glucose concentration, and decreased (P < 0.05) urea concentration. CE supplementation increased (P < 0.05) the villus height in the ileum and the villus height/crypt depth in the jejunum and ileum, but decreased (P < 0.05) the crypt depth in the jejunum and ileum. CE supplementation increased (P < 0.05) most plasma essential AA concentrations. Additionally, CE supplementation upregulated (P < 0.05) ASCT1, b0,+ AT, B0 AT1, EAAT3, rBAT, y+ LAT2 and PepT1 expression in the jejunum, and b0,+ AT, EAAT3, rBAT, y+ LAT2, CAT1 and PepT1 in the ileum. CONCLUSIONS: Collectively, our results indicated that CE supplementation promotes intestinal physiological absorption of AAs by upregulating gene expression of small intestinal key AA and peptide transporters, thereby enhancing the growth performance of broilers. © 2020 Society of Chemical Industry.


Subject(s)
Amino Acids/blood , Chickens/metabolism , Citrus/metabolism , Intestine, Small/metabolism , Membrane Transport Proteins/metabolism , Nutrients/metabolism , Animal Feed/analysis , Animals , Chickens/blood , Chickens/genetics , Chickens/growth & development , Citrus/chemistry , Dietary Supplements/analysis , Intestinal Absorption , Membrane Transport Proteins/genetics
13.
Fish Shellfish Immunol ; 86: 1081-1087, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30593900

ABSTRACT

Antimicrobial peptides (AMPs) are small proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens (bacteria, fungi and viruses). In this study, the effects of AMPs from Bacillus subtilis on Epinephelus coioides were examined. E. coioides were fed with diets containing AMPs (0, 100, 200, 400 or 800 mg/kg) for four weeks. Results showed that the levels of total protein (TP), albumin (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and blood glucose (GLU) and lipopolysaccharide (LPS) in the serum of E. coioides changed than those of the control group; compared to the control group, the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and lysozyme (LZM) levels in E. coioides fed with different dosages AMP diets were also different; in addition, the mRNA expression of tumor necrosis factor alpha (TNF-α), interleukin-1-beta (IL-1ß), and heat shock protein 90 (Hsp90) in the tissues of E. coioides were measured, the three genes in the tissues examined were significantly upregulated. The results demonstrated that diets containing AMPs can enhance the antioxidant capacity and innate immune ability of E. coioides, indicating that AMPs might be a potential alternative to antibiotics in E. coioides.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Antioxidants/metabolism , Bass/immunology , Immunity, Innate , Animal Feed/analysis , Animals , Antimicrobial Cationic Peptides/administration & dosage , Bacillus subtilis/chemistry , Bass/metabolism , Blood Chemical Analysis/veterinary , Diet/veterinary
14.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119788, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879132

ABSTRACT

Chondrocytes rely heavily on glycolysis to maintain the metabolic homeostasis and cartilage matrix turnover. Glycolysis in chondrocytes is remodeled by diverse biochemical and biomechanical factors due to the sporty joint microenvironment. Transforming growth factor-ß2 (TGF-ß2), one of the most abundant TGF-ß superfamily members in chondrocytes, has increasingly attracted attention in cartilage physiology and pathology. Although previous studies have emphasized the importance of TGF-ß superfamily members on cell metabolism, whether and how TGF-ß2 modulates glycolysis in chondrocytes remains elusive. In the current study, we investigated the effects of TGF-ß2 on glycolysis in chondrocytes and explored the underlying biomechanisms. The results showed that TGF-ß2 could enhance glycolysis in chondrocytes by increasing glucose consumption, up-regulating liver-type ATP-dependent 6-phosphofructokinase (Pfkl) expression, and boosting lactate production. The TGF-ß2 signal entered chondrocytes via TGF-ß receptor type I (TßRI), and activated p-Smad3 signaling to regulate the glycolytic pathway. Subsequent experiments employing specific inhibitors of TßRI and p-Smad3 further substantiated the role of TGF-ß2 in enhancement of glycolysis via TßRI/p-Smad3 axis in chondrocytes. The results provide new understanding of the metabolic homeostasis in chondrocytes induced by TGF-ß superfamily and might shed light on the prevention and treatment of related osteoarticular diseases.

15.
Article in English | MEDLINE | ID: mdl-38904896

ABSTRACT

Antibiotic substitutes have become a research focus due to restrictions on antibiotic usage. Among the antibiotic substitutes on the market, probiotics have been extensively researched and used. However, the mechanism by which probiotics replace antibiotics remains unclear. In this study, we aimed to investigate this mechanism by comparing the effects of probiotics and antibiotics on broiler growth performance and intestinal microbiota composition. Results shown that both probiotics and antibiotics increased daily weight gain and reduced feed conversion rate in broilers. Analysis of ileum and cecum microorganisms via 16S rRNA gene sequencing revealed that both interventions decreased intestinal microbial diversity. Moreover, the abundance of Bacteroides increased in the mature ileum, while that of Erysipelatoclostridium decreased in the cecum in response to both probiotics and antibiotics. The main metabolites of probiotics and antibiotics in the intestine were found to be organic acids, amino acids, and sugars, which might play comparable roles in growth performance. Furthermore, disaccharides and trisaccharides may be essential components in the ileum that enable probiotics to replace antibiotics. These findings provide important insights into the mechanisms underlying the use of probiotics as antibiotic substitutes in broiler breeding.

16.
ACS Biomater Sci Eng ; 9(8): 4831-4845, 2023 08 14.
Article in English | MEDLINE | ID: mdl-36797839

ABSTRACT

Cell-based cartilage tissue engineering faces a great challenge in the repair process, partly due to the special physical microenvironment. Human stem cell from apical papilla (hSCAP) shows great potential as seed cells because of its versatile differentiation capacity. However, whether hSCAP has potent chondrogenic differentiation ability in the physical microenvironment of chondroid remains unknown. In this study, we fabricated poly(dimethylsiloxane) (PDMS) substrates with different stiffnesses and investigated the chondrogenic differentiation potential of hSCAPs. First, we found that hSCAPs cultured on soft substrates spread more narrowly accompanied by cortical actin organization, a hallmark of differentiated chondrocytes. On the contrary, stiff substrates were favorable for cell spreading and stress fiber formation. More importantly, the increased chondrogenic differentiation of hSCAPs seeded on soft substrates was confirmed by characterizing increased extracellular proteoglycan aggregation through Alcian blue staining and Safranin O staining and enhanced markers toward chondrogenic differentiation including SRY-box transcription factor 9 (Sox9), type II collagen (Col2), and aggrecan in both normal α-minimum essential medium (αMEM) and specific chondrogenic medium (CM) culture conditions. Then, we investigated the mechanosensing/mechanotransduction governing the chondrogenic differentiation of hSCAPs in response to different stiffnesses and found that stiffness-sensitive integrin ß1 and focal adhesion kinase (FAK) were essential for mechanical signal perception and were oriented at the start of mechanotransduction induced by matrix stiffness. We next showed that the increased nuclear accumulation of Smad3 signaling and target Sox9 facilitated the chondrogenic differentiation of hSCAPs on the soft substrates and further verified the importance of Rho-associated protein kinase (ROCK) signaling in regulating chondrogenic differentiation and its driving factors, Smad3 and Sox9. By using SIS3, the specific inhibitor of p-Smad3, and miRNA targeting Rho-associated protein kinase 1 (ROCK-1), we finally confirmed the importance of ROCK/Smad3/Sox9 axis in the chondrogenic differentiation of hSCAPs in response to substrate stiffness. These results help us to increase the understanding of how microenvironmental stiffness directs chondrogenic differentiation from the aspects of mechanosensing, mechanotransduction, and cell fate decision, which will be of great value in the application of hSCAPs in cartilage tissue engineering.


Subject(s)
Mechanotransduction, Cellular , MicroRNAs , Humans , Cell Differentiation , Chondrogenesis/genetics , Engineering
17.
Cell Death Discov ; 9(1): 250, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454120

ABSTRACT

Fibroblast growth factor 19 (FGF19) has appeared as a new possible avenue in the treatment of skeletal metabolic disorders. However, the role of FGF19 on cell cycle progression in skeletal system is poorly understood. Here we demonstrated that FGF19 had the ability to reduce the proliferation of chondrocytes and cause cell cycle G2 phase arrest through its interaction with ß-Klotho (KLB), an important accessory protein that helps FGF19 link to its receptor. FGF19-mediated cell cycle arrest by regulating the expressions of cdk1/cylinb1, chk1 and gadd45a. We then confirmed that the binding of FGF19 to the membrane receptor FGFR4 was necessary for FGF19-mediated cell cycle arrest, and further proved that FGF19-mediated cell cycle arrest was via activation of p38/MAPK signaling. Through inhibitor experiments, we discovered that inhibition of FGFR4 led to down-regulation of p38 signaling even in the presence of FGF19. Meanwhile, inhibiting p38 signaling reduced the cell cycle arrest of chondrocytes induced by FGF19. Furthermore, blocking p38 signaling facilitated to retain the expression of cdk1 and cyclinb1 that had been reduced in chondrocytes by FGF19 and decreased the expression of chk1 and gadd45a that had been enhanced by FGF19 in chondrocytes. Taking together, this study is the first to demonstrate that FGF19 induces cell cycle arrest at G2 phase via FGFR4-p38/MAPK axis and enlarges our understanding about the role of FGF19 on cell cycle progression in chondrocytes.

18.
J Hazard Mater ; 458: 131707, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37379596

ABSTRACT

Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.


Subject(s)
Isatin , Enterococcus hirae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Indoles/metabolism
19.
Cell Prolif ; : e13579, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012096

ABSTRACT

It is well recognized that mitochondrial dynamics plays a vital role in cartilage physiology. Any perturbation in mitochondrial dynamics could cause disorders in cartilage metabolism and even lead to the occurrence of cartilage diseases such as osteoarthritis (OA). TGF-ß3, as an important growth factor that appears in the joints of OA disease, shows its great potential in chondrocyte growth and metabolism. Nevertheless, the role of TGF-ß3 on mitochondrial dynamics is still not well understood. Here we aimed to investigate the effect of TGF-ß3 on mitochondrial dynamics of chondrocytes and reveal its underlying bio-mechanism. By using transmission electron microscopy (TEM) for the number and morphology of mitochondria, western blotting for the protein expressions, immunofluorescence for the cytoplasmic distributions of proteins, and RNA sequencing for the transcriptome changes related to mitochondrial dynamics. We found that TGF-ß3 could increase the number of mitochondria in chondrocytes. TGF-ß3-enhanced mitochondrial number was via promoting the mitochondrial fission. The mitochondrial fission induced by TGF-ß3 was mediated by AMPK signaling. TGF-ß3 activated canonical p-Smad3 signaling and resultantly mediated AMPK-induced mitochondrial fission. Taken together, these results elucidate an understanding of the role of TGF-ß3 on mitochondrial dynamics in chondrocytes and provide potential cues for therapeutic strategies in cartilage injury and OA disease in terms of energy metabolism.

20.
Medicine (Baltimore) ; 101(2): e28594, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35029242

ABSTRACT

BACKGROUND: Exercise-induced fatigue (EIF) is a common occurrence in sports competition and training. It may cause trouble to athletes' motor skill execution and cognition. Although traditional Chinese medicine Jianpi therapy has been commonly used for EIF management, relevant evidence on the effectiveness and safety of Jianpi therapy is still unclear. METHODS: Databases including PubMed, Embase, Web of Science, the Cochrane Library, SinoMed, China Science and Technology Journal Database (VIP), China National Knowledge Infrastructure (CNKI), and Wanfang will be searched for relevant randomized controlled trials from databases from 2000 to 2021. Randomized controlled trials related to traditional Chinese medicine Jianpi therapy in the treatment and management of EIF will be included. Systematic review and meta-analysis of the data will be performed in RevMan 5.3 according to the Preferred Reporting Items of Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Two authors independently performed the literature searching, data extraction, and quality evaluation. Risk of bias was assessed using the Cochrane Risk of Bias Tool for randomized clinical trials. RESULTS: This systematic review and meta-analysis will summarize the latest evidence for traditional Chinese medicine Jianpi therapy in EIF. The results will be submitted to a peer-reviewed journal once completed. CONCLUSION: The conclusion of our research will provide evidence to support traditional Chinese medicine Jianpi therapy as an effective intervention for patients with EIF.OSF Registration DOI: 10.17605/OSF.IO/NRKX4.


Subject(s)
Drugs, Chinese Herbal , Exercise/adverse effects , Fatigue , Medicine, Chinese Traditional , Drugs, Chinese Herbal/therapeutic use , Fatigue/drug therapy , Fatigue/etiology , Humans , Meta-Analysis as Topic , Research Design , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL