Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Plant Physiol ; 189(2): 955-971, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35274732

ABSTRACT

Environmental signals, especially daylength, play important roles in determining fertility in photoperiod-sensitive genic male sterile (PGMS) lines that are critical to sustain production of high-yielding hybrid rice (Oryza sativa) varieties. However, the mechanisms by which PGMS lines perceive changes in photoperiod and transmit those signals to elicit downstream effects are not well understood. In this study, we compared the transcriptomes from the leaves and anthers of carbon starved anther (csa), a PGMS line, to wild-type (WT) tissues under different photoperiods. Components of circadian clock in the leaves, including Circadian Clock-Associated 1 and Pseudo-Response Regulator (PRR95), played vital roles in sensing the photoperiod signals. Photoperiod signals were weakly transduced to anthers, where gene expression was mainly controlled by the CSA allele. CSA played a critical role in regulating sugar metabolism and cell wall synthesis in anthers under short-day conditions, and transcription of key genes inducing csa-directed sterility was upregulated under long-day (LD) conditions though not to WT levels, revealing a mechanism to explain the partial restoration of fertility in rice under LD conditions. Eight direct targets of CSA regulation were identified, all of which were genes involved in sugar metabolism and transport (cell wall invertases, SWEETs, and monosaccharide transporters) expressed only in reproductive tissues. Several hub genes coordinating the effects of CSA regulation were identified as critical elements determining WT male fertility and further analysis of these and related genes will reveal insights into how CSA coordinates sugar metabolism, cell wall biosynthesis, and photoperiod sensing in rice anther development.


Subject(s)
Oryza , Fertility/genetics , Gene Expression Regulation, Plant , Oryza/metabolism , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Sugars/metabolism
2.
Anal Chem ; 94(42): 14635-14641, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36239397

ABSTRACT

The construction of open hot-spot structures that facilitate the entry of analytes is crucial for surface-enhanced Raman spectroscopy. Here, metallic niobium nitride (NbN) three-dimensional (3D) hierarchical networks with open nanocavity structure are first found to exhibit a strong visible-light localized surface plasmon resonance (LSPR) effect and extraordinary surface-enhanced Raman scattering (SERS) performance. The unique nanocavity structure allows easy entry of molecules, promoting the utilization of electromagnetic hot spots. The NbN substrate has a lowest detection limit of 1.0 × 10-12 M and a Raman enhancement factor (EF) of 1.4 × 108 for contaminants. Furthermore, the NbN hierarchical networks possess outstanding environmental durability, high signal reproducibility, and detection universality. The remarkable SERS sensitivity of the NbN substrate can be attributed to the joint effect of LSPR and interfacial charge transport (CT).


Subject(s)
Niobium , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Reproducibility of Results , Surface Plasmon Resonance/methods
3.
Plant Physiol ; 187(4): 2405-2418, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34618084

ABSTRACT

Seed germination is critical for plant survival and agricultural production, which is affected by both internal seed factors and external environmental conditions. However, the genetic basis and underlying molecular mechanisms of early seed germination in crops remain largely unclear. Here, we report that R2R3 MYB transcription factor Carbon Starved Anther (CSA) is expressed specifically in Oryza sativa embryo and aleurone in response to seed imbibition, peaking at 3-6 h and undetectable by 24-h post-imbibition. CSA seeds germinated more quickly than wild-type rice seeds and had higher levels of amylase activity, glucose, and inactive abscisic acid-glucose ester (ABA-GE), but lower levels of ABA. Through analyzing the CSA-associated transcriptome and CSA binding to downstream target genes, we identified two glycolytic genes as direct CSA targets. CSA inhibits Amylase 3A expression to limit glucose production from starch and activates Os3BGlu6 expression to promote de-conjugation of ABA-GE to ABA; these functions serve to slow germination and improve seedling resilience to abiotic stress in the first 3 weeks of growth. Therefore, this study unveils a protection mechanism conferred by CSA during early seed germination by balancing glucose and ABA metabolism to optimize seed germination and stress response fitness.


Subject(s)
Abscisic Acid/metabolism , Genetic Fitness/physiology , Germination/genetics , Oryza/genetics , Plant Proteins/genetics , Sugars/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Seedlings/genetics , Seeds/physiology
4.
Anal Chem ; 93(37): 12776-12785, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34493037

ABSTRACT

The development of low-cost, biocompatible, and durable high-performance substrates is an urgent issue in the field of surface-enhanced Raman scattering (SERS). Herein, by reducing and exfoliating the TiO2-layered nanoplates in the gas phase, nitrogen-doped titanium monoxide (N-TiO) ultrathin nanosheets composed of 2-3 single layers with a thickness of only ∼1.2 nm are synthesized. Compared with pure TiO, the oxidation resistance of N-TiO is greatly improved, in which the oxidation threshold is significantly increased from 187.5 to 415.6 °C. The N-TiO ultrathin nanosheets are found to have strong surface plasmon resonance in the visible region. These ultrathin N-TiO nanosheets can be easily assembled into a large-scale flexible membrane and exhibit remarkable SERS effects. Moreover, this low-cost flexible SERS substrate combines the high durability of noble-metal substrates and the high biocompatibility of semiconductor substrates.


Subject(s)
Spectrum Analysis, Raman , Titanium , Nitric Oxide , Nitrogen , Surface Plasmon Resonance
5.
New Phytol ; 231(4): 1612-1629, 2021 08.
Article in English | MEDLINE | ID: mdl-34031889

ABSTRACT

Photoperiod-dependent male fertility is a critical enabler of modern hybrid breeding. A MYB transcription factor, CSA, is a key regulator of sugar partitioning in rice anthers, disruption of which causes photoperiod-sensitive male sterility. However, little is known about the molecular mechanisms governing plant fertility in response to photoperiod. Here, we have obtained another rice photoperiod-sensitive male sterile mutant, csa2, which exhibits semi-sterility under long-day (LD) conditions, with normal fertility under short-day (SD) conditions. CSA2 specifically expressed in anthers, and here is shown to be indispensable for sugar partitioning to anthers under LD conditions. The CSA2 protein can restore the fertility of csa mutants under SD conditions when expressed in a CSA-specific pattern, indicating that the two proteins share common downstream regulatory targets. Transcriptomic analyses also reveal discrete regulatory targets in anthers. Furthermore, the regulatory role of CSA2 in sugar transport was influenced by the photoperiod conditions during floral initiation, not simply during anther development. Collectively, we propose that rice evolved at least two MYB proteins, CSA2 and CSA, that regulate sugar transport in anthers under LD and SD conditions, respectively. This finding provides insight into the molecular mechanisms that regulate male fertility in response to photoperiod.


Subject(s)
Oryza , Flowers/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Photoperiod , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Sugars , Transcription Factors/genetics
6.
BMC Endocr Disord ; 21(1): 111, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34044831

ABSTRACT

BACKGROUND: Low free triiodothyronine (FT3) levels are related to a poor prognosis deterioration in patients with COVID-19 presenting with non-thyroidal illness syndrome (NTI). This study was designed to explore whether free thyroxin (FT4) or thyroid stimulating hormone (TSH) levels affected the mortality of patients with COVID-19 presenting with NTI. METHODS: Patients with COVID-19 complicated with NTI who were treated at our hospital were included in this retrospective study. Patients were divided into low TSH and normal TSH groups, as well as low and normal-high FT4 group, according to the reference range of TSH or FT4 levels. The 90-day mortality and critical illness rates were compared among patients with low and normal TSH levels, as well as among patients with low FT4 levels and normal-high FT4 levels; in addition, differences in demographic and laboratory data were compared. A Kaplan-Meier analysis and Cox proportional hazards models were used to assess the associations of TSH and FT4 levels with mortality. RESULTS: One hundred fifty patients with low FT3 levels and without a history of thyroid disease were included, 68% of whom had normal FT4 and TSH levels. Critical illness rates (74.07% VS 37.40%, P = 0.001) and mortality rates (51.85% VS 22.76%, P = 0.002) were significantly higher in the low TSH group than in the normal TSH group. Although no significant difference in the critical illness rate was found (P = 0.296), the mortality rate was significantly higher in the low FT4 group (P = 0.038). Low TSH levels were independently related to 90-day mortality (hazard ratio = 2.78, 95% CI:1.42-5.552, P = 0.003). CONCLUSIONS: Low FT4 and TSH concentrations were associated with mortality in patients with COVID-19 presenting with NTI; moreover, low TSH levels were an independent risk factor for mortality in these patients.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Euthyroid Sick Syndromes/epidemiology , SARS-CoV-2 , Thyrotropin/blood , Thyroxine/blood , Adult , Aged , Aged, 80 and over , COVID-19/blood , Cohort Studies , Comorbidity , Euthyroid Sick Syndromes/blood , Female , Humans , Male , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk Factors , Thyrotropin/deficiency , Thyroxine/deficiency
7.
Phytother Res ; 35(1): 297-310, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32776627

ABSTRACT

Celastrol, a natural triterpene, has been shown to treat obesity and its related metabolic disorders. In this study, we first assessed the relationship between the antiobesity effects of celastrol and its antiinflammatory activities. Our results showed that celastrol can reduce weight gain, ameliorate glucose intolerance, insulin resistance, and dyslipidemia without affecting food intake in high-fat diet-induced obese mice. A CLAMS was used to clarify the improvement of metabolic profiles was attribute to increased adipose thermogenesis after celastrol treatment. Further studies found that celastrol decreased the infiltration of macrophage as well as its inflammatory products (IL-1ß, IL-18, MCP-1α, and TNF-α) in liver and adipose tissues, which also displayed an obvious inhibition of TLR3/NLRP3 inflammasome molecules. This study demonstrated that celastrol could be a potential drug for treating metabolic disorders, the underlying mechanism is related to ameliorating metabolic inflammation, thus increasing body energy expenditure.


Subject(s)
Anti-Obesity Agents/pharmacology , Energy Metabolism/drug effects , Inflammation/drug therapy , Triterpenes/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/physiology , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Diet, High-Fat , Dyslipidemias/drug therapy , Glucose Intolerance/drug therapy , Inflammasomes/drug effects , Insulin Resistance , Liver/drug effects , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Pentacyclic Triterpenes , Thermogenesis/drug effects , Weight Gain/drug effects
8.
Int J Mol Sci ; 22(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34948047

ABSTRACT

The actin cytoskeleton is crucial for plant morphogenesis, and organization of actin filaments (AF) is dynamically regulated by actin-binding proteins. However, the roles of actin-binding proteins, particularly type II formins, in this process remain poorly understood in plants. Here, we report that a type II formin in rice, Oryza sativa formin homolog 3 (OsFH3), acts as a major player to modulate AF dynamics and contributes to rice morphogenesis. osfh3 mutants were semi-dwarf with reduced size of seeds and unchanged responses to light or gravity compared with mutants of osfh5, another type II formin in rice. osfh3 osfh5 mutants were dwarf with more severe developmental defectiveness. Recombinant OsFH3 could nucleate actin, promote AF bundling, and cap the barbed end of AF to prevent elongation and depolymerization, but in the absence of profilin, OsFH3 could inhibit AF elongation. Different from other reported type II formins, OsFH3 could bind, but not bundle, microtubules directly. Furthermore, its N-terminal phosphatase and tensin homolog domain played a key role in modulating OsFH3 localization at intersections of AF and punctate structures of microtubules, which differed from other reported plant formins. Our results, thus, provide insights into the biological function of type II formins in modulating plant morphology by acting on AF dynamics.


Subject(s)
Formins/genetics , Formins/metabolism , Oryza/growth & development , Actin Cytoskeleton/metabolism , Formins/chemistry , Morphogenesis , Mutation , Organ Size , Oryza/genetics , Oryza/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
9.
BMC Complement Altern Med ; 19(1): 255, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31519174

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is characterized by excessive hepatic lipid accumulation. Many studies have suggested that lipid overload is the key initial factor that contributes to hepatic steatosis. Our previous study indicated that diosgenin (DSG) has a beneficial effect on energy metabolism, but the underlying mechanism remains unclear. METHODS: Human normal hepatocytes (LO2 cells) were incubated with palmitic acid to establish the cell model of nonalcoholic fatty liver. The effects of DSG on lipid metabolism, glucose uptake and mitochondrial function were evaluated. Furthermore, the mechanism of DSG on oxidative stress, lipid consumption and lipid synthesis in LO2 cells was investigated. RESULTS: The results indicated that palmitic acid induced obvious lipid accumulation in LO2 cells and that DSG treatment significantly reduced the intracellular lipid content. DSG treatment upregulated expression of lipolysis proteins, including phospho-AMP activated protein kinase (p-AMPK), phospho-acetyl-coA carboxylase (p-ACC) and carnitine acyl transferase 1A (CPT-1A), and inhibited expression of lipid synthesis-related proteins, including sterol regulatory element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS). Additionally, DSG-treated cells displayed a marked improvement in mitochondrial function, with less production of reactive oxygen species and a higher mitochondrial membrane potential compared with the model group. CONCLUSION: This study suggests that DSG can reduce intracellular lipid accumulation in LO2 cells and that the underlying mechanism may be related to the improving oxidative stress, increasing fatty acid ß-oxidation and decreasing lipid synthesis. The above changes might be mediated by the activation of the AMPK/ACC/CPT-1A pathway and inhibition of the SREBP-1c/FAS pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Diosgenin/pharmacology , Fatty Acid Synthases/metabolism , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/adverse effects , AMP-Activated Protein Kinases/genetics , Acetyl-CoA Carboxylase/genetics , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Cell Line , Fatty Acid Synthases/genetics , Humans , Liver/drug effects , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
10.
BMC Complement Altern Med ; 19(1): 35, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30704457

ABSTRACT

BACKGROUND: Wu-Mei-Wan (WMW) is a traditional Chinese herbal formulation that is clinically prescribed to treat diabetes mellitus in China. WMW has been shown to alleviate damage in pancreatic ß cells, but the underlying mechanism remains unclear. This study aims to explore how WMW plays a protective role in pancreatic islets. METHODS: Drug testing and mechanism analyses were performed on mice treated with three concentrations of WMW (4800, 9600, and 19,200 mg/kg/bw) for four consecutive weeks. Blood was collected from both db/db and wild-type mice to determine fasting blood glucose (FBG) and serum insulin levels. The expression of proteins related to apoptosis, cysteinyl aspartate-specific proteinase 12 (caspase-12) and B-cell leukemia 2 (Bcl-2), was measured by western blot. Interleukin-1ß (IL-1ß), interleukin-18 (IL-18), monocyte chemoattractant protein-1α (MCP-1α), and tumor necrosis factor-α (TNF-α) in the pancreas were tested with enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry staining of F4/80 was performed to measure the pancreatic infiltration of macrophages. Western blot and immunofluorescence staining of the NLRP3 inflammasome were used to measure the expression of proteins related to apoptosis and inflammation. RESULTS: WMW dose-dependently reduced FBG and promoted serum insulin secretion in db/db mice compared to the wild-type controls. WMW protected pancreatic ß cells with a pattern of decreasing caspase-12 and increasing Bcl-2 expression. WMW also reversed the upregulated production of IL-1ß, IL-18, MCP-1α, and macrophage-specific surface glycoprotein F4/80 in diabetic mice. In addition, the protein expression levels of NLRP3 inflammasome components NLRP3, ASC, and caspase-1 (P20) were higher in db/db mice than in wild-type controls. CONCLUSIONS: WMW inhibits the activation of the NLRP3 inflammasome to protect pancreatic ß cells and prevent type 2 diabetes mellitus development.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Drugs, Chinese Herbal/pharmacology , Inflammasomes/drug effects , Insulin-Secreting Cells/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Protective Agents/pharmacology , Animals , Cells, Cultured , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
11.
BMC Complement Altern Med ; 19(1): 314, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31744490

ABSTRACT

BACKGROUNDS: Inflammation is recognized as the key pathological mechanism of type 2 diabetes. The hypoglyceamic effects of berberine (BBR) are related to the inhibition of the inflammatory response, but the mechanism is not completely clear. METHODS: The inflammatory polarization of Raw264.7 cells and primary peritoneal macrophages were induced by LPS, and then effects and underlying mechanisms of BBR were explored. An inflammatory model was established by LPS treatment at different concentrations for different treatment time. An ELISA assay was used to detect the secretions of TNF-α. RT-PCR was applied to detect M1 inflammatory factors. The F4/80+ ratio and CD11c+ ratio of primary peritoneal macrophages were determined by flow cytometry. The expressions of p-AMPK and TLR4 were detected by Western blot. The cytoplasmic and nuclear distributions of NFκB p65 were observed by confocal microscopy. The binding of TLR4 to MyD88 was tested by CoIP, and the affinity of BBR for TLR4 was assessed by molecular docking. RESULTS: Upon exposure to LPS, the secretion of TNF-α and transcription of inflammatory factors in macrophages increased, cell morphology changed and protrusions appeared gradually, the proportion of F4/80+CD11c+ M1 macrophages increased, and the nuclear distribution of NFκB p65 increased. BBR pretreatment partially inhibited the changes mentioned above. However, the expression of TLR4 and p-AMPK did not change significantly after LPS intervention for 3 h. Meanwhile, CoIP showed that the interaction between TLR4 and MyD88 increased, and BBR inhibited the binding. Molecular docking suggested that BBR might interact with TLR4. CONCLUSIONS: Inflammatory changes were induced in macrophages after LPS stimulation for 3 h, and BBR pretreatment inhibited inflammatory polarization. BBR might interact with TLR4 and disturb TLR4/MyD88/NFκB signalling pathway, and it might be the mechanism by which BBR attenuated inflammation in the early phase.


Subject(s)
Berberine/pharmacology , Macrophages/drug effects , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Animals , Berberine/chemistry , Cell Polarity/drug effects , Cells, Cultured , Female , Humans , Lipopolysaccharides/pharmacology , Macrophages/chemistry , Macrophages/cytology , Macrophages/metabolism , Mice , Molecular Docking Simulation , Myeloid Differentiation Factor 88/chemistry , Myeloid Differentiation Factor 88/genetics , Protein Binding/drug effects , RAW 264.7 Cells , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/genetics , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
Theor Appl Genet ; 131(4): 787-800, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29234827

ABSTRACT

KEY MESSAGE: SpWRKY3 was identified as a resistance gene to Phytophthora infestans from Solanum pimpinellifolium L3708 and its transgenic tomato showed a significant resistance to P. infestans. This finding reveals the potential application of SpWRKY3 in future molecular breeding. Transcription factors (TFs) play crucial roles in the plant response to various pathogens. In this present study, we used comparative transcriptome analysis of tomatoes inoculated with and without Phytophthora infestans to identify 1103 differentially expressed genes. Seven enrichment GO terms (level 4) associated with the plant resistance to pathogens were identified. It was found that thirty-five selected TF genes from GO enriched term, sequence-specific DNA binding transcription factor activity (GO: 0003700), were induced by P. infestans. Of these TFs, the accumulation of a homologous gene of WRKY (SpWRKY3) was significantly changed after P. infestans induction, and it was also isolated form P. infestans-resistant tomato, Solanum pimpinellifolium L3708. Overexpression of SpWRKY3 in tomato positively modulated P. infestans defense response as shown by decreased number of necrotic cells, lesion sizes and disease index, while the resistance was impaired after SpWRKY3 silencing. After P. infestans infection, the expression levels of PR genes in transgenic tomato plants overexpressed SpWRKY3 were significantly higher than those in WT, while the number of necrotic cells and the reactive oxygen species (ROS) accumulation were fewer and lower. These results suggest that SpWRKY3 induces PR gene expression and reduces the ROS accumulation to protect against cell membrane injury, leading to enhanced resistance to P. infestans. Our results provide insight into SpWRKY3 as a positive regulator involved in tomato-P. infestans interaction, and its function may enhance tomato resistance to P. infestans.


Subject(s)
Phytophthora infestans , Plant Diseases/genetics , Plant Leaves/genetics , Solanum lycopersicum/genetics , Transcription Factors/metabolism , Transcriptome , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transcription Factors/genetics
13.
Physiol Plant ; 155(3): 248-66, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25496091

ABSTRACT

WRKY transcription factors are key regulatory components of plant responses to biotic and abiotic stresses. SpWRKY1, a pathogen-induced WRKY gene, was isolated from tomato (Solanum pimpinellifolium L3708) using in silico cloning and reverse transcriptase-polymerase chain reaction (RT-PCR) methods. SpWRKY1 expression was significantly induced following oomycete pathogen infection and treatment with salt, drought, salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA). Overexpression of SpWRKY1 in tobacco conferred greater resistance to Phytophthora nicotianae infection, as evidenced by lower malondialdehyde (MDA) content; relative electrolyte leakage (REL); higher chlorophyll content; and higher peroxidase (POD, EC 1.11.1.7), superoxide dismutase (SOD, EC 1.15.1.1) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) activities. This resistance was also coupled with enhanced expression of SA- and JA-associated genes (NtPR1, NtPR2, NtPR4, NtPR5 and NtPDF1.2), as well as of various defense-related genes (NtPOD, NtSOD and NtPAL). In addition, transgenic tobacco plants also displayed an enhanced tolerance to salt and drought stresses, mainly demonstrated by the transgenic lines exhibiting lower accumulation of MDA content and higher POD (EC 1.11.1.7), SOD (EC 1.15.1.1) activities, chlorophyll content, photosynthetic rate and stomatal conductance, accompanied by enhanced expression of defense-related genes (NtPOD, NtSOD, NtLEA5, NtP5CS and NtNCED1) under salt and drought stresses. Overall, these findings suggest that SpWRKY1 acts as a positive regulator involved in tobacco defense responses to biotic and abiotic stresses.


Subject(s)
Nicotiana/genetics , Nicotiana/microbiology , Phytophthora/pathogenicity , Plant Proteins/genetics , Salt Tolerance/genetics , Solanum lycopersicum/genetics , Amino Acid Sequence , Droughts , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Molecular Sequence Data , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Solanum/genetics , Nicotiana/drug effects
14.
Zhongguo Zhong Yao Za Zhi ; 40(21): 4262-7, 2015 Nov.
Article in Zh | MEDLINE | ID: mdl-27071268

ABSTRACT

This article focused on a comparative analysis on the pharmacokinetic and pharmacodynamic characteristics of berberine (BER) and jateorhizine(JAT) in Coptidis Rhizoma powder (HL-P) and their monomeric compounds (BER + JAT, BJ) in type 2 diabetic (T2D) rats to explore the beneficial. effect of HL-P in the treatment of T2D. The T2D rats were treated with HL-P, BER, JAT and BJ, respectively for 63 d. The pharmacokinetic parameters, dynamic changes in blood glucose level and blood lipid values were measured. The results showed that, compared with other corresponding group, t(max), T(½ka) of BER and JAT in HL-P group were reduced, while C(max), AUC(inf), AUC(last), V(L)/F were significantly increased; compared with model group, blood glucose levels were decreased significantly in HL-P group since the 18th day, while those in BER or BJ group were reduced since the 36th day, however, blood glucose levels showed no obvious changes in JAT group; compared with model group, FFA values in all treatment group were decreased significantly. Moreover, TG, HDL and LDL value in HL-P group, LDL value in BER group and HDL value in BJ group were improved significantly. The above results showed that Coptidis Rhizoma powder showed excellent pharmacokinetic characteristics and excellent activity of lowering blood glucose and lipid. It provided a scientific basis for oral application of Coptidis Rhizoma powder in the treatment of T2D.


Subject(s)
Berberine/administration & dosage , Coptis/chemistry , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/administration & dosage , Animals , Berberine/pharmacokinetics , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Drugs, Chinese Herbal/pharmacokinetics , Humans , Male , Powders/administration & dosage , Powders/pharmacokinetics , Rats , Rats, Wistar
15.
Mol Nutr Food Res ; 68(8): e2300671, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566522

ABSTRACT

SCOPE: Cerebral ischemia-reperfusion (IR) injury stands as a prominent global contributor to disability and mortality. Nervonic acid (NA), a bioactive elongated monounsaturated fatty acid, holds pivotal significance in human physiological well-being. This research aims to explore the prophylactic effects and fundamental mechanisms of NA in a rat model of cerebral IR injury. METHODS AND RESULTS: Through the induction of middle cerebral artery occlusion, this study establishes a rat model of cerebral IR injury and comprehensively assesses the pharmacodynamic impacts of NA pretreatment. This evaluation involves behavioral analyses, histopathological examinations, and quantification of serum markers. Detailed mechanisms of nervonic acid's prophylactic effects are revealed through fecal metabolomics and 16S rRNA sequencing analyses. Our findings robustly support nervonic acid's capacity to ameliorate neurological impairments in rats afflicted with cerebral IR injury. Beyond its neurological benefits, NA demonstrates its potential by rectifying metabolic perturbations across diverse pathways, particularly those pertinent to unsaturated fatty acid metabolism. Additionally, NA emerges as a modulator of gut microbiota composition, notably by selectively enhancing vital genera like Lactobacillus. CONCLUSION: These comprehensive findings highlight the potential of incorporating NA as a functional component in dietary interventions aimed at targeting cerebral IR injury.


Subject(s)
Dietary Supplements , Feces , Gastrointestinal Microbiome , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Gastrointestinal Microbiome/drug effects , Male , Feces/microbiology , Feces/chemistry , Rats , Infarction, Middle Cerebral Artery , Brain Ischemia , Disease Models, Animal
16.
Ultrason Sonochem ; 104: 106845, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38490059

ABSTRACT

Vapor bubbles in cryogenic fluids may collapse violently under subcooled and pressurized conditions. Despite important implications for engineering applications such as cavitation erosion in liquid propellant rocket engines, these intense phenomena are still largely unexplored. In this paper, we systematically investigate the ambient conditions leading to the occurrence of violent collapses in liquid nitrogen and analyze their thermodynamic characteristics. Using Brenner's time ratio χ, the regime of violent collapse is identified in the ambient pressure-temperature parameter space. Complete numerical simulations further refine the prediction and illustrate two classes of collapses. At 1 < χ < 10, the collapse is impacted by significant thermal effects and attains only moderate wall velocity. Only when χ > 10 does the collapse show more inertial features. A mechanism analysis pinpoints a critical time when the surrounding liquid enters supercritical state. The ultimate collapse intensity is shown to be closely associated with the dynamics at this moment. Our study provides a fresh perspective to the treatment of cavitation in cryogenic fluids. The findings can be instrumental in engineering design to mitigate adverse effects arising from intense cavitational activities.

17.
Biomed Pharmacother ; 170: 116060, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147735

ABSTRACT

Excessive synthesis of triglycerides and cholesterol accelerates the progression of hepatic steatosis in metabolic-associated fatty liver disease (MAFLD). However, the precise mechanism by which 6-gingerol mitigates hepatic steatosis in MAFLD model mice has yet to be fully understood. The present study observed that 6-gingerol administration exhibited significant protective effects against obesity, insulin resistance, and hepatic steatosis in mice subjected to a high-fat diet (HFD), and mitigated lipid accumulation in HepG2 cells treated with palmitate (PA). Following the hepatic lipidomic analysis, we confirmed that the AMPK-SREBPs signaling pathway as the underlying molecular mechanism by which 6-gingerol inhibited triglyceride and cholesterol biosynthesis, both in vivo and in vitro, through Western blot and immunofluorescence assay. Additionally, the application of an AMPK agonist/inhibitor further validated that 6-gingerol promoted AMPK activation by increasing the phosphorylation level of AMPK in vitro. Notably, the inhibitory effect of 6-gingerol on cholesterol biosynthesis, rather than triglyceride biosynthesis, was significantly diminished after silencing SREBP2 using a lentiviral plasmid shRNA in HepG2 cells. Our study demonstrates that 6-gingerol mitigates hepatic triglyceride and cholesterol biosynthesis to alleviate hepatic steatosis by activating the AMPK-SREBPs signaling pathway, indicating that 6-gingerol may be a potential candidate in the therapy of MAFLD.


Subject(s)
AMP-Activated Protein Kinases , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Triglycerides/metabolism , AMP-Activated Protein Kinases/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liver , Lipid Metabolism , Signal Transduction , Hep G2 Cells , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
18.
J Huazhong Univ Sci Technolog Med Sci ; 33(6): 877-885, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24337852

ABSTRACT

The effect of Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats was investigated. The rat model of type 2 diabetes was established by feeding on a high-fat diet for 8 weeks and by subsequently intravenous injection of small doses of streptozotocin. Rats in treatment groups, including the Fructus Mume formula treatment group (FM), the cold property herbs of Fructus Mume formula treatment group (CFM), the warm property herbs of Fructus Mume formula treatment group (WFM), were administrated with Fructus Mume formula and its separated prescription extract by gavage, while the rats in diabetic model group (DM) and metformin group (MET) were given by gavage with normal saline and metformin correspondingly. The body weight before and after treatment was measured, and the oral glucose tolerance test (OGTT) and the insulin release test (IRT) were performed. The homeostasis model assessment-insulin resistance index (HOMA-IR) was calculated. The protein and mRNA expression levels of Insr, ß-arrestin-2, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were detected by using Western blotting and RT-PCR respectively. The results demonstrated that, as compared with DM group, OGTT, IRT (0 h, 1 h) levels and HOMR-IR in treatment groups were all reduced, meanwhile their protein and mRNA expression levels of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were obviously increased, and their protein and mRNA expression levels of ß-arrestin-2 in the liver and skeletal muscle tissues were also markedly increased. It was suggested that the Fructus Mume formula and its separated prescription extracts could effectively improve insulin resistance in type 2 diabetic rats, which might be related to the up-regulated expression of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues, and ß-arrestin-2 in the liver and skeletal muscle tissues.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Drugs, Chinese Herbal/therapeutic use , Hypoglycemic Agents/therapeutic use , Insulin Resistance , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Arrestins/genetics , Arrestins/metabolism , Diabetes Mellitus, Experimental/metabolism , Drugs, Chinese Herbal/pharmacology , Glucose Intolerance/drug therapy , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/pharmacology , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , beta-Arrestin 2 , beta-Arrestins
19.
Front Plant Sci ; 14: 1110366, 2023.
Article in English | MEDLINE | ID: mdl-36968410

ABSTRACT

Camellia oleifera Abel is a highly valued woody edible oil tree, which is endemic to China. It has great economic value because C. oleifera seed oil contains a high proportion of polyunsaturated fatty acids. C. oleifera anthracnose caused by Colletotrichum fructicola, poses a serious threat to C. oleifera growth and yield and causes the benefit of the C. oleifera industry to suffer directly. The WRKY transcription factor family members have been widely characterized as vital regulators in plant response to pathogen infection. Until now, the number, type and biological function of C. oleifera WRKY genes are remains unknown. Here, we identified 90 C. oleifera WRKY members, which were distributed across 15 chromosomes. C. oleifera WRKY gene expansion was mainly attributed to segmental duplication. We performed transcriptomic analyses to verify the expression patterns of CoWRKYs between anthracnose-resistant and -susceptible cultivars of C. oleifera. These results demonstrated that multiple candidate CoWRKYs can be induced by anthracnose and provide useful clues for their functional studies. CoWRKY78, an anthracnose-induced WRKY gene, was isolated from C. oleifera. It was significantly down-regulated in anthracnose-resistant cultivars. Overexpression of CoWRKY78 in tobacco markedly reduced resistance to anthracnose than WT plants, as evidenced by more cell death, higher malonaldehyde content and reactive oxygen species (ROS), but lower activities of superoxide dismutase (SOD), peroxidase (POD), as well as phenylalanine ammonia-lyase (PAL). Furthermore, the expression of multiple stress-related genes, which are associated with ROS-homeostasis (NtSOD and NtPOD), pathogen challenge (NtPAL), and pathogen defense (NtPR1, NtNPR1, and NtPDF1.2) were altered in the CoWRKY78-overexpressing plants. These findings increase our understanding of the CoWRKY genes and lay the foundation for the exploration of anthracnose resistance mechanisms and expedite the breeding of anthracnose-resistant C. oleifera cultivars.

20.
Front Plant Sci ; 14: 1109603, 2023.
Article in English | MEDLINE | ID: mdl-37008468

ABSTRACT

Few flower buds in a high-yield year are the main factors restricting the yield of Camellia oleifera in the next year. However, there are no relevant reports on the regulation mechanism of flower bud formation. In this study, hormones, mRNAs, and miRNAs were tested during flower bud formation in MY3 ("Min Yu 3," with stable yield in different years) and QY2 ("Qian Yu 2," with less flower bud formation in a high-yield year) cultivars. The results showed that except for IAA, the hormone contents of GA3, ABA, tZ, JA, and SA in the buds were higher than those in the fruit, and the contents of all hormones in the buds were higher than those in the adjacent tissues. This excluded the effect of hormones produced from the fruit on flower bud formation. The difference in hormones showed that 21-30 April was the critical period for flower bud formation in C. oleifera; the JA content in MY3 was higher than that in QY2, but a lower concentration of GA3 contributed to the formation of the C. oleifera flower bud. JA and GA3 might have different effects on flower bud formation. Comprehensive analysis of the RNA-seq data showed that differentially expressed genes were notably enriched in hormone signal transduction and the circadian system. Flower bud formation in MY3 was induced through the plant hormone receptor TIR1 (transport inhibitor response 1) of the IAA signaling pathway, the miR535-GID1c module of the GA signaling pathway, and the miR395-JAZ module of the JA signaling pathway. In addition, the expression of core clock components GI (GIGANTEA) and CO (CONSTANS) in MY3 increased 2.3-fold and 1.8-fold over that in QY2, respectively, indicating that the circadian system also played a role in promoting flower bud formation in MY3. Finally, the hormone signaling pathway and circadian system transmitted flowering signals to the floral meristem characteristic genes LFY (LEAFY) and AP1 (APETALA 1) via FT (FLOWERING LOCUS T) and SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO 1) to regulate flower bud formation. These data will provide the basis for understanding the mechanism of flower bud alternate formation and formulating high yield regulation measures for C. oleifera.

SELECTION OF CITATIONS
SEARCH DETAIL