Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Eur Heart J ; 45(37): 3871-3885, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38976370

ABSTRACT

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Histones , Lumican , Osteogenesis , Animals , Calcinosis/genetics , Calcinosis/pathology , Calcinosis/metabolism , Aortic Valve/pathology , Aortic Valve/metabolism , Lumican/metabolism , Lumican/genetics , Humans , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Mice , Osteogenesis/genetics , Osteogenesis/physiology , Histones/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Mice, Knockout , Male , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics
2.
Small ; 20(29): e2400158, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38415969

ABSTRACT

Noble metallic aerogels with the self-supported hierarchical structure and remarkable activity are promising for methanol fuel cells, but are limited by the severe poisoning and degradation of active sites during electrocatalysis. Herein, the highly stable electrocatalyst of N-doped carbon dots-PtNi (NCDs-PtNi) aerogels is proposed by confining NCDs with alloyed PtNi for methanol oxidation and oxygen reduction reactions. Comprehensive electrocatalytic measurements and theoretical investigations suggest the improvement in structure stability and regulation in electronic structure for better electrocatalytic durability when confining NCDs with PtNi aerogels. Notably, the NCDs-PtNi aerogels perform 12-fold higher activity than that of Pt/C and maintain 52% of their initial activity after 5000 cycles toward acidic methanol oxidation. The enhanced stability and activity of NCDs-PtNi aerogels are also evident for oxygen reduction reactions in different electrolytes. These results highlight the effectiveness of stabilizing metallic aerogels with NCDs, offering a feasible pathway to develop robust electrocatalysts for fuel cells.

3.
Small ; 20(27): e2308285, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38353330

ABSTRACT

Heterogenizing the molecular catalysts on conductive scaffolds to achieve the isolated molecular dispersion and expected coordination structures is significant yet still challenging. Herein, a sulfur-driving strategy to anchor monodispersed cobalt phthalocyanine on nitrogen and sulfur co-doped graphene (NSG-CoPc) is demonstrated. Experimental and theoretical analysis prove that the incorporation of S dramatically improves the adsorption capability of NSG and evokes the monodispersion of the CoPc molecule, promoting the axial Co─N coordination and the electron delocalization of the Co catalytic center. Benefiting from the reduced activation energy barrier and boosted electron transfer, as well as the maximized active site utilization, NSG-CoPc exhibits outstanding H2O2 oxidization and sensing performance (used as a representative reaction). Moreover, the usage of NSG as a substrate can be readily extended to other metal (Ni, Cu, and Fe) phthalocyanine molecules with molecular-level dispersion. This work clarifies the mechanism of heteroatoms decoration and provides a new paradigm in devising monodispersed molecular catalysts with modulated chemical surroundings for broad applications.

4.
Bioorg Chem ; 147: 107421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714118

ABSTRACT

Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Homeostasis , Hydroxamic Acids , Iron , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Iron/metabolism , Iron/chemistry , Cell Proliferation/drug effects , Homeostasis/drug effects , Structure-Activity Relationship , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/chemical synthesis , Molecular Structure , Apoptosis/drug effects , Anions/chemistry , Anions/pharmacology , Dose-Response Relationship, Drug , Animals , Cell Line, Tumor , Mice , Quinine/analogs & derivatives
5.
Kidney Int ; 103(2): 320-330, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36341730

ABSTRACT

IgA nephropathy (IgAN) is the most common glomerulonephritis, characterized by the presence of predominant IgA deposits in the mesangium. Deposition of pathogenic IgA in kidney tissue is a fundamental initiating process that has not been fully studied. Here, we employed optical imaging to directly visualize kidney deposition of IgA with optimized spatial and temporal resolution in BALB/c nude mice. Real-time fluorescence imaging revealed that IgA isolated from patients with IgAN preferentially accumulated in the kidneys, compared with IgA purified from healthy individuals. There was no difference in the distribution of either IgA preparation by the liver. Photoacoustic computed tomography dynamically demonstrated and quantified the enhanced retention of pathological IgA in the kidney cortex. Photoacoustic microscopy tracked IgA deposition in the glomeruli with a resolution down to three microns in a mouse model. Notably, longitudinal fluorescent imaging revealed that galactose-deficient IgA (Gd-IgA), which was elevated in the circulation of patients with IgAN, persisted in the kidney for longer than two weeks, and stable deposition of Gd-IgA induced kidney impairment, including albuminuria and mesangial proliferation. Thus, our study highlights that the aberrant kidney depositional kinetics of Gd-IgA is involved in the pathogenesis of IgAN. Hence, cross-scale optical imaging has potential applications in assessing immune-mediated kidney diseases and uncovering underlying mechanisms of disease.


Subject(s)
Glomerulonephritis, IGA , Animals , Mice , Glomerulonephritis, IGA/diagnostic imaging , Glomerulonephritis, IGA/pathology , Galactose , Mice, Nude , Immunoglobulin A , Optical Imaging
6.
Am J Pathol ; 192(3): 503-517, 2022 03.
Article in English | MEDLINE | ID: mdl-34896072

ABSTRACT

The overactivation of canonical Wnt/ß-catenin pathway is one of the main cascades for the initiation, progression, and recurrence of most human malignancies. As an indispensable coreceptor for the signaling transduction of the canonical Wnt/ß-catenin pathway, LRP5 is up-regulated and exerts a carcinogenic role in most types of cancer. However, its expression level and role in gastric cancer (GC) has not been clearly elucidated. The current work showed that LRP5 was overexpressed in GC tissues and the expression of LRP5 was positively associated with the advanced clinical stages and poor prognosis. Ectopic expression of LRP5 enhanced the proliferation, invasiveness, and drug resistance of GC cells in vitro, and accelerated the tumor growth in nude mice, through activating the canonical Wnt/ß-catenin signaling pathway and up-regulating aerobic glycolysis, thus increasing the energy supply for GC cells. Additionally, the expression of LRP5 and glycolysis-related genes showed an obviously positive correlation in GC tissues. By contrast, the exact opposite results were observed when the endogenous LRP5 was silenced in GC cells. Collectively, these results not only reveal the carcinogenic role of LRP5 during GC development through activating the canonical Wnt/ß-catenin and glycolysis pathways, but also provide a valuable candidate for the diagnosis and treatment of human GC.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-5 , Stomach Neoplasms , Wnt Signaling Pathway , Animals , Carcinogenesis , Cell Line, Tumor , Cell Proliferation/genetics , Glycolysis , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mice , Mice, Nude , Stomach Neoplasms/pathology , beta Catenin/metabolism
7.
Ann Hepatol ; 28(5): 101119, 2023.
Article in English | MEDLINE | ID: mdl-37271480

ABSTRACT

INTRODUCTION AND OBJECTIVES: Renal and bone impairment has been reported in chronic hepatitis B (CHB) patients receiving long-term tenofovir disoproxil fumarate (TDF) therapy. This study aimed to assess the incidence of renal and bone impairment in CHB patients with long-term TDF therapy and to identify the changes in bone mineral density (BMD) and renal function in these patients after switching to entecavir (ETV) or tenofovir alafenamide (TAF). MATERIALS AND METHODS: This retrospective study collected clinical data from CHB patients who received TDF monotherapy over 96 weeks. The changes in BMD and renal function were analyzed after 96 weeks of switching antiviral regimens (ETV or TAF) or maintenance TDF. RESULTS: At baseline, 154 patients receiving TDF monotherapy over 96 weeks were enrolled, with a younger median age of 36.75 years, 35.1% (54/154) of patients experienced elevated urinary ß2 microglobulin and 20.1% (31/154) of patients had reduced hip BMD (T<-1). At week 96, among the 123 patients with baseline normal BMD, patients who maintained TDF (n=85) had experienced a decrease in hip BMD, while patients who switched antiviral regimens (n=38) experienced an increase (-13.97% vs 2.34%, p<0.05). Among patients with a baseline reduced BMD (n=31), the alterations in BMD were similar in patients who maintained TDF (n=5) and those who switched antiviral regimens (n=26) (-15.81% vs 7.35%, p<0.05). Irrespective of baseline BMD status, renal function decreased significantly in patients who maintained TDF and improved in patients who switched antiviral regimens. CONCLUSIONS: Younger CHB patients on long-term TDF therapy are at high risk for bone and renal impairment, with the risk being reduced when switched to ETV or TAF.


Subject(s)
Hepatitis B, Chronic , Humans , Adult , Tenofovir/adverse effects , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/drug therapy , Retrospective Studies , Alanine/therapeutic use , Adenine/therapeutic use , Kidney/physiology , Antiviral Agents/adverse effects , Treatment Outcome
8.
Phytother Res ; 37(3): 820-833, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36420870

ABSTRACT

Atractylenolide-1 (AT-1) is a major octanol alkaloid isolated from Atractylodes Rhizoma and is widely used to treat various diseases. However, few reports have addressed the anticancer potential of AT-1, and the underlying molecular mechanisms of its anticancer effects are unclear. This study aimed to assess the effect of AT-1 on triple-negative breast cancer (TNBC) cell proliferation and migration and explore its potential molecular mechanisms. Cell invasion assays confirmed that the number of migrating cells decreased after AT-1 treatment. Colony formation assays showed that AT-1 treatment impaired the ability of MDA-MB-231 cells to form colonies. AT-1 inhibited the expression of p-p38, p-ERK, and p-AKT in MDA-MB-231 cells, significantly downregulated the proliferation of anti-apoptosis-related proteins CDK1, CCND1, and Bcl2, and up-regulated pro-apoptotic proteins Bak, caspase 3, and caspase 9. The gas chromatography-mass spectroscopy results showed that AT-1 downregulated the metabolism-related genes TPI1 and GPI through the glycolysis/gluconeogenesis pathway and inhibited tumor growth in vivo. AT-1 affected glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI, inhibiting the proliferation, migration, and invasion of (TNBC) MDA-MB-231 cells and suppressing tumor growth in vivo.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Cell Line, Tumor , Gluconeogenesis , Antineoplastic Agents/pharmacology , Cell Proliferation , Cell Movement
9.
Phytother Res ; 37(2): 477-489, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36199227

ABSTRACT

Atractylodin (ATL) has been reported to exert anti-inflammatory effects. Osteogenic changes induced by inflammation in valve interstitial cells (VICs) play a key role in the development of calcified aortic valve disease (CAVD). This study aimed to investigate the anti-calcification effects of ATL on aortic valves. Human VICs (hVICs) were exposed to osteogenic induction medium (OM) containing ATL to investigate cell viability, osteogenic gene and protein expression, and anti-calcification effects. Gas chromatography-mass spectroscopy (GC-MS) metabolomics analysis was used to detect changes in the metabolites of hVICs stimulated with OM before and after ATL administration. The compound-reaction-enzyme-gene network was used to identify drug targets. Gene interference was used to verify the targets. ApoE-/- mice fed a high-fat (HF) diet were used to evaluate the inhibition of aortic valve calcification by ATL. Treatment with 20 µM ATL in OM prevented calcified nodule accumulation and decreases in the gene and protein expression levels of ALP, RUNX2, and IL-1ß. Differential metabolite analysis showed that D-mannose was highly associated with the anti-calcification effect of ATL. The addition of D-mannose prevented calcified nodule accumulation and inhibited succinate-mediated HIF-1α activation and IL-1ß production. The target of ATL was identified as GLA. Silencing of the GLA gene (si-GLA) reversed the anti-osteogenic differentiation of ATL. In vivo, ATL ameliorated aortic valve calcification by preventing decreases in GLA expression and the up-regulation of IL-1ß expression synchronously. In conclusion, ATL is a potential drug for the treatment of CAVD by targeting GLA to regulate D-mannose metabolism, thereby inhibiting succinate-mediated HIF-1α activation and IL-1ß production.


Subject(s)
Aortic Valve , Mannose , Humans , Mice , Animals , Mannose/metabolism , Mannose/pharmacology , Mice, Knockout, ApoE , Cell Differentiation/genetics , Cells, Cultured , Osteogenesis
10.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677568

ABSTRACT

In the process of discovering more neural-system-related bioactive compounds from Xylaria nigripes, xylariamino acid A (1), a new amino acid derivative, and a new isovaleric acid phenethyl ester (2) were isolated and identified. Their structures and absolute configurations were determined by analyses of IR, HRESIMS, NMR spectroscopic data, and gauge-independent atomic orbital (GIAO) NMR calculation, as well as electronic circular dichroism (ECD) calculation. The isolated compounds were evaluated for their neuroprotective effects against damage to PC12 cells by oxygen and glucose deprivation (OGD). Compounds 1 and 2 can increase the viability of OGD-induced PC12 cells at all tested concentrations. Moreover, compound 2 (1 µmol L-1) can significantly reduce the percentage of apoptotic cells.


Subject(s)
Ascomycota , Xylariales , Animals , Rats , Xylariales/chemistry , PC12 Cells , Magnetic Resonance Spectroscopy , Molecular Structure
11.
J Cell Mol Med ; 26(4): 1095-1112, 2022 02.
Article in English | MEDLINE | ID: mdl-34997691

ABSTRACT

The overactivation of canonical Wnt/ß-catenin pathway and the maintenance of cancer stem cells (CSCs) are essential for the onset and malignant progression of most human cancers. However, their regulatory mechanism in colorectal cancer (CRC) has not yet been well demonstrated. Low-density lipoprotein receptor-related protein 5 (LRP5) has been identified as an indispensable co-receptor with frizzled family members for the canonical Wnt/ß-catenin signal transduction. Herein, we show that activation of LRP5 gene promotes CSCs-like phenotypes, including tumorigenicity and drug resistance in CRC cells, through activating the canonical Wnt/ß-catenin and IL-6/STAT3 signalling pathways. Clinically, the expression of LRP5 is upregulated in human CRC tissues and closely associated with clinical stages of patients with CRC. Further analysis showed silencing of endogenous LRP5 gene is sufficient to suppress the CSCs-like phenotypes of CRC through inhibiting these two pathways. In conclusion, our findings not only reveal a regulatory cross-talk between canonical Wnt/ß-catenin signalling pathway, IL-6/STAT3 signalling pathway and CD133-related stemness that promote the malignant behaviour of CRC, but also provide a valuable target for the diagnosis and treatment of CRC.


Subject(s)
Colorectal Neoplasms , Low Density Lipoprotein Receptor-Related Protein-5 , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Humans , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Neoplastic Stem Cells/metabolism , Phenotype , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
12.
Chemistry ; 27(42): 10966-10972, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-33982296

ABSTRACT

Post treatment of metal-organic frameworks (MOFs) is widely employed to develop efficient electrocatalysts with better catalytic properties. But the complex processes of post treatment generally led to the collapse of the original structures of MOFs, making the preservation of their pristine hierarchical porous structure a great challenge. Herein, we propose the strategy of alkali treatment of Ni-MOF to transform it into Ni(OH)2 with similar morphology and enhanced electrocatalytic properties for methanol oxidation reaction (MOR). The structure and electrocatalytic properties of as-obtained Ni(OH)2 nanostructured flowers were seriously depended on the alkali concentrations. As the result, Ni(OH)2 obtained from Ni-MOF treated by 0.25 M NaOH (noted as Ni(OH)2 -0.25) performs 1.5 and 2.5 times larger current density than those of Ni(OH)2 -0.025 and Ni(OH)2 -0.5 for MOR. Moreover, the electrocatalytic process and mechanism of MOR on the catalyst of Ni(OH)2 -0.25 are also revealed. Hence, this ex situ conversion strategy of alkali treatment for Ni-MOF uncovered the transformation of MOFs in alkaline solution and develops robust electrocatalyst for practical application of methanol fuel cells.

13.
Angew Chem Int Ed Engl ; 59(24): 9702-9710, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32159271

ABSTRACT

DNA nanotechnology plays an increasingly important role in the biomedical field; however, its application in the design of organic nanomaterials is underexplored. Herein, we report the use of DNA nanotechnology to transport a NIR-II-emitting nanofluorophore across the blood-brain barrier (BBB), facilitating non-invasive imaging of brain tumors. Specifically, the DNA block copolymer, PS-b-DNA, is synthesized through a solid-phase click reaction. We demonstrate that its self-assembled structure shows exceptional cluster effects, among which BBB-crossing is the most notable. Therefore, PS-b-DNA is utilized as an amphiphilic matrix to fabricate a NIR-II nanofluorephore, which is applied in in vivo bioimaging. Accordingly, the NIR-II fluorescence signal of the DNA-based nanofluorophore localized at a glioblastoma is 3.8-fold higher than the NIR-II fluorescence signal of the PEG-based counterpart. The notably increased imaging resolution will significantly benefit the further diagnosis and therapy of brain tumors.


Subject(s)
Blood-Brain Barrier/metabolism , Coloring Agents/metabolism , DNA/chemistry , DNA/metabolism , Infrared Rays , Biological Transport , Cell Line , Humans , Molecular Imaging
14.
Clin Pharmacol Ther ; 116(2): 295-303, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38686952

ABSTRACT

Chronic hepatitis B (CHB) remains a major global public health problem. The functional cure is the ideal therapeutic target recommended by the latest guidelines, and pursuing a functional cure has become the key treatment end point of current therapy and for upcoming clinical trials. In this review, based on the latest published clinical research evidence, we analyzed the concept and connotation of clinical cures and elaborated on the benefits of clinical cures in detail. Secondly, we have summarized various potential treatment methods for achieving clinical cures, especially elaborating on the latest research progress of interferon-based optimized treatment strategies in achieving clinical cures. We also analyzed which populations can achieve clinical cures and conducted a detailed analysis of relevant virological and serological markers in screening clinical cure advantage populations and predicting clinical cure achievement. In addition, we also introduced the difficulties that may be encountered in the current pursuit of achieving a clinical cure.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Interferons , Humans , Hepatitis B, Chronic/drug therapy , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Interferons/therapeutic use , Treatment Outcome , Evidence-Based Medicine/methods , Hepatitis B virus/drug effects , Hepatitis B virus/immunology , Drug Therapy, Combination
15.
Trials ; 25(1): 652, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363218

ABSTRACT

BACKGROUND: Direct high-quality evidence remains absent on the benefits of HBeAg-negative chronic hepatitis B patients (CHB) with normal alanine transaminase (ALT) and positive HBV DNA after nucleos(t)ide analogs (NAs) treatment. METHODS: This is a single-center, open-label, randomized parallel controlled trial with a follow-up duration of 96 weeks. An estimated 300 patients will be recruited at West China Hospital of Sichuan University, China. After stratified by serum HBV DNA (< 2000 vs. ≥ 2000 IU/ml), eligible patients will be randomized (allocation ratio 1:1) to receive either antiviral therapy (the treatment group) or regular examination alone (the control group). The primary outcomes are rates of virological response and changes in the levels of serum HBV pregenomic RNA (pgRNA) and scores of health-related qualities of life. DISCUSSION: This randomized controlled trial focuses on HBeAg-negative patients with normal ALT, including those of the inactive carrier phase and the grey zone, whose antiviral treatment remains controversial. Additionally, a health-related quality of life scale is introduced to comprehensively estimate the benefit of antiviral treatment apart from virological response and adverse liver events. Meaningfully, the study findings will provide high-quality and direct evidence for optimal clinical management in such populations. TRIAL REGISTRATION: This trial was registered with the Chinese Clinical Trial Registry (ChiCTR2300069391) on 15 March 2023.


Subject(s)
Alanine Transaminase , Antiviral Agents , DNA, Viral , Hepatitis B virus , Hepatitis B, Chronic , Randomized Controlled Trials as Topic , Humans , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , Alanine Transaminase/blood , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/blood , DNA, Viral/blood , Adult , Treatment Outcome , China , Quality of Life , Male , Middle Aged , Female , Hepatitis B e Antigens/blood , Young Adult , Biomarkers/blood , Nucleosides/therapeutic use , Time Factors , Viral Load
16.
Anal Chim Acta ; 1296: 342333, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401928

ABSTRACT

Nitric oxide (NO) plays an essential role in regulating various physiological and pathological processes. This has spurred various efforts to develop feasible methods for the detection of NO. Herein we designed and synthesized a novel donor-acceptor fluorescent probe Car-NO for the selective and specific detection of NO. Reaction of Car-NO with NO generated a new donor-acceptor structure with strong intramolecular charge transfer (ICT) effect, and led to remarkable chromogenic change from yellow to blue and dramatic fluorescence quenching. Car-NO exhibited high selectivity, excellent sensitivity, and rapid response for the detection of NO. In addition, the nanoparticles prepared from Car-NO (i.e., Car-NO NPs) showed strong NIR emission and high selectivity/sensitivity. Car-NO NPs was successfully employed to image both endogenous and exogenous NO in HeLa and RAW 264.7 cells. The present findings reveal that Car-NO is a promising probe for the detection and bioimaging of NO.


Subject(s)
Fluorescent Dyes , Nitric Oxide , Mice , Animals , Humans , Fluorescent Dyes/toxicity , Fluorescent Dyes/chemistry , HeLa Cells , Fluorescence , RAW 264.7 Cells
17.
Environ Pollut ; 360: 124615, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39059700

ABSTRACT

Atmospheric fine particulate matter (PM2.5) can trigger the production of cytotoxic reactive oxygen species (ROS), which can trigger or exacerbate oxidative stress and pulmonary inflammation. We collected 111 daily (∼24 h) ambient PM2.5 samples within an urban region of North China during four seasons of 2019-2020. PM2.5 samples were examined for carbonaceous components, water-soluble ions, and elements, together with their oxidative potential (represent ROS-producing ability) by DTT assay. The seasonal peak DTTv was recorded in winter (2.86 ± 1.26 nmol min-1 m-3), whereas the DTTm was the highest in summer (40.6 ± 8.7 pmol min-1 µg-1). WSOC displayed the highest correlation with DTT activity (r = 0.84, p < 0.0001), but the influence of WSOC on the elevation of DTTv was extremely negligible. Combustion source exhibited the most significant and robust correlation with the elevation of DTTv according to the linear mixed-effects model result. Source identification investigation using positive matrix factorization displayed that combustion source (36.2%), traffic source (30.7%), secondary aerosol (15.7%), and dust (14.1%) were driving the DTTv, which were similar to the results from the multiple linear regression (MLR) analysis. Backward trajectory analysis revealed that the major air masses originate from local and regional transportation, but PM2.5 OP was more susceptible to the influence of short-distance transport clusters. Discerning the influence of chemicals on health-pertinent attributes of PM2.5, such as OP, could facilitate a deep understanding of the cause-and-effect relationship between PM2.5 and impacts.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Particulate Matter/analysis , China , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/statistics & numerical data , Oxidation-Reduction , Seasons , Reactive Oxygen Species , Oxidative Stress
18.
Commun Biol ; 7(1): 1074, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223327

ABSTRACT

Target-aware drug discovery has greatly accelerated the drug discovery process to design small-molecule ligands with high binding affinity to disease-related protein targets. Conditioned on targeted proteins, previous works utilize various kinds of deep generative models and have shown great potential in generating molecules with strong protein-ligand binding interactions. However, beyond binding affinity, effective drug molecules must manifest other essential properties such as high drug-likeness, which are not explicitly addressed by current target-aware generative methods. In this article, aiming to bridge the gap of multi-objective target-aware molecule generation in the field of deep learning-based drug discovery, we propose ParetoDrug, a Pareto Monte Carlo Tree Search (MCTS) generation algorithm. ParetoDrug searches molecules on the Pareto Front in chemical space using MCTS to enable synchronous optimization of multiple properties. Specifically, ParetoDrug utilizes pretrained atom-by-atom autoregressive generative models for the exploration guidance to desired molecules during MCTS searching. Besides, when selecting the next atom symbol, a scheme named ParetoPUCT is proposed to balance exploration and exploitation. Benchmark experiments and case studies demonstrate that ParetoDrug is highly effective in traversing the large and complex chemical space to discover novel compounds with satisfactory binding affinities and drug-like properties for various multi-objective target-aware drug discovery tasks.


Subject(s)
Drug Discovery , Monte Carlo Method , Awareness , Drug Discovery/methods , Humans , Machine Learning
19.
Neural Netw ; 176: 106328, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38688067

ABSTRACT

Given a graph G, the network collapse problem (NCP) selects a vertex subset S of minimum cardinality from G such that the difference in the values of a given measure function f(G)-f(G∖S) is greater than a predefined collapse threshold. Many graph analytic applications can be formulated as NCPs with different measure functions, which often pose a significant challenge due to their NP-hard nature. As a result, traditional greedy algorithms, which select the vertex with the highest reward at each step, may not effectively find the optimal solution. In addition, existing learning-based algorithms do not have the ability to model the sequence of actions taken during the decision-making process, making it difficult to capture the combinatorial effect of selected vertices on the final solution. This limits the performance of learning-based approaches in non-submodular NCPs. To address these limitations, we propose a unified framework called DT-NC, which adapts the Decision Transformer to the Network Collapse problems. DT-NC takes into account the historical actions taken during the decision-making process and effectively captures the combinatorial effect of selected vertices. The ability of DT-NC to model the dependency among selected vertices allows it to address the difficulties caused by the non-submodular property of measure functions in some NCPs effectively. Through extensive experiments on various NCPs and graphs of different sizes, we demonstrate that DT-NC outperforms the state-of-the-art methods and exhibits excellent transferability and generalizability.


Subject(s)
Algorithms , Neural Networks, Computer , Decision Making/physiology , Humans
20.
Nat Prod Res ; 38(1): 128-134, 2024.
Article in English | MEDLINE | ID: mdl-35949107

ABSTRACT

A pair of new chromone derivative enantiomers, (+)-xylarichromone A (1a) and (-)-xylarichromone A (1b), were isolated from the solid fermentation of Xylaria nigripes. The planar structure of 1 was determined by extensive NMR spectroscopic data, and its absolute configuration was assigned by comparison the ECD spectra with the known chromone derivatives. Compound 1 was the first chromone derivative reported from this medicinal fungus. The neuroprotective effects of 1 against oxygen and glucose deprivation (OGD) induced pheochromocytoma-12 cells (PC12) injury was investigated.


Subject(s)
Ascomycota , Chromones , Chromones/pharmacology , Chromones/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL