Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Analyst ; 146(24): 7635-7644, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34797361

ABSTRACT

In the research of carbon dots (CDs) containing various nitrogen sources, it was first found that urea/citric acid-CDs showed a selective discolouration reaction with sulphide ions. Therefore, by optimizing various synthesis and detection conditions of the CDs determining sulfur ions, such as the raw material ratio, temperature, time, pH, and oxidation atmosphere in the CD synthesis, a discolour CD-probe method for trace-level sulphide ions was developed. The method is environmentally friendly, shows two linear-response ranges in 0.050-1.0 mg L-1 (A = -0.0827c + 0.8366) and 1.0-15 mg L-1 S2- (A = -0.0209c + 0.7587) and can be used for the high and low concentration quantification of sulphide in various wastewaters. Subsequently, in order to realize the separation and detection of sulphide ions in wastewaters or rich- and barren-liquids containing N-methyldiethanolamine and other substances in desulphurizing solutions, an automatic pretreatment system was also established.


Subject(s)
Carbon , Quantum Dots , Fluorescent Dyes , Nitrogen , Sulfides , Sulfur , Urea
2.
Int J Biol Macromol ; 278(Pt 1): 134656, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134194

ABSTRACT

This study reports the structure-activity relationships of a unique subclass IIb bacteriocin, plantaricin EvF, which consists of two peptide chains and possesses potent antimicrobial activity. Because the plantaricin Ev peptide chain lacks an α-helix structure, plantaricin EvF is unable to exert its antimicrobial activity through helix-helix interactions like typical subclass IIb bacteriocins. We have shown by various structural evaluation methods that plantaricin Ev can be stabilized by hydrogen bonding at amino acid residues R3, V12, and R13 to the N-terminal region of plantaricin F. This binding gives plantaricin EvF a special spade-shaped structure that exerts antimicrobial activity. In addition, the root-mean-square deviations (RMSDs) of the amino acid residues Y6, F8, and R13 of plantaricin Ev pre- and post-binding were 1.512, 1.723, and 1.369, respectively, indicating that they underwent large structural changes. The alanine scanning experiments demonstrated the important role of the above key amino acids in maintaining the structural integrity of plantaricin EvF. This study not only reveals the unique structural features of plantaricin EvF, but also provides an insight into the structure-activity relationships of subclass IIb bacteriocins.


Subject(s)
Bacteriocins , Bacteriocins/chemistry , Bacteriocins/pharmacology , Structure-Activity Relationship , Amino Acid Sequence , Hydrogen Bonding , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Models, Molecular
3.
Int J Biol Macromol ; 280(Pt 3): 135850, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326613

ABSTRACT

Ovalbumin (OVA)-induced intestinal injury is a recurrent and potentially fatal condition. Previous studies have highlighted the roles of exopolysaccharides, particularly a mannose-rich (89.59 %) exopolysaccharide-1 (EPS-1) with a molecular weight of 39.9 kDa, isolated from Bifidobacterium breve H4-2, in repairing intestinal barriers and regulating immune responses. In this study, a mouse model of OVA-induced intestinal injury was used to investigate the effects of EPS-1 on intestinal barrier restoration. The results demonstrated that EPS-1 treatment (400 mg/kg. d) significantly reduced the allergic index (3.25 ± 0.43) in OVA-challenged mice (p < 0.05), improved the physical integrity of the intestinal barrier by increasing mucin content and goblet cell number in the ileum (p < 0.05). EPS-1 treatment (400 mg/kg. d) also maintained immune barrier integrity by restoring imbalanced CD4 + T/CD8 + T ratios from 0.86 ± 0.02 to 1.04 ± 0.06, regulating Th1/Th2 and Th17/Treg cells balance, as well as inhibited the NF-κB signaling pathway. Furthermore, EPS-1 maintained microbiota homeostasis by increasing the abundances of Ruminococcus, Butyricicoccus, and Muribaculaceae, while reducing Streptococcus and Candidatus arthromitus. This microbiota modulation enhanced the levels of metabolites such as tyrosine, methionine, tryptophan, triglycerides, and salidroside. In conclusion, EPS-1 shows promise as a functional polysaccharide for therapeutic use.

SELECTION OF CITATIONS
SEARCH DETAIL