Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Publication year range
1.
Insect Mol Biol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949741

ABSTRACT

Transcriptomic data have been used to study sex chromosome dosage compensation (SCDC) in approximately 10 Lepidoptera ZW species, yielding a consensus compensation pattern of Z ≈ ZZ < AA . $$ \approx \mathrm{ZZ}<\mathrm{AA}. $$ It remains unclear whether this compensation pattern holds when examining more Lepidoptera ZW species and/or using proteomic data to analyse SCDC. Here we combined transcriptomic and proteomic data as well as transcriptional level of six individual Z genes to reveal the SCDC pattern in Helicoverpa armigera, a polyphagous lepidopteran pest of economic importance. Transcriptomic analysis showed that the Z chromosome expression of H. armigera was balanced between male and female but substantially reduced relative to autosome expression, exhibiting an SCDC pattern of Z ≈ ZZ < AA $$ \approx \mathrm{ZZ}<\mathrm{AA} $$ . When using H. amigera midgut proteomic data, the SCDC pattern of this species changed from Z ≈ ZZ < AA $$ \approx \mathrm{ZZ}<\mathrm{AA} $$ at transcriptomic level to Z = ZZ = AA at the proteomic level. RT-qPCR analysis of transcript abundance of six Z genes found that compensation for each Z gene could vary from no compensation to overcompensation, depending on the individual genes and tissues tested. These results demonstrate for the first time the existence of a translational compensation mechanism, which is operating in addition to a translational mechanism, such as has been reported in other lepidopteran species. And the transcriptional compensation mechanism functions to accomplish Z chromosome dosage balance between the sexes (M = F on the Z chromosome), whereas the translation compensation mechanism operates to achieve dosage compensation between Z chromosome and autosome (Z = AA).

2.
PLoS Biol ; 19(4): e3001190, 2021 04.
Article in English | MEDLINE | ID: mdl-33844686

ABSTRACT

Chemical insecticides have been heavily employed as the most effective measure for control of agricultural and medical pests, but evolution of resistance by pests threatens the sustainability of this approach. Resistance-conferring mutations sometimes impose fitness costs, which may drive subsequent evolution of compensatory modifier mutations alleviating the costs of resistance. However, how modifier mutations evolve and function to overcome the fitness cost of resistance still remains unknown. Here we show that overexpression of P450s not only confers imidacloprid resistance in the brown planthopper, Nilaparvata lugens, the most voracious pest of rice, but also leads to elevated production of reactive oxygen species (ROS) through metabolism of imidacloprid and host plant compounds. The inevitable production of ROS incurs a fitness cost to the pest, which drives the increase or fixation of the compensatory modifier allele T65549 within the promoter region of N. lugens peroxiredoxin (NlPrx) in the pest populations. T65549 allele in turn upregulates the expression of NlPrx and thus increases resistant individuals' ability to clear the cost-incurring ROS of any source. The frequent involvement of P450s in insecticide resistance and their capacity to produce ROS while metabolizing their substrates suggest that peroxiredoxin or other ROS-scavenging genes may be among the common modifier genes for alleviating the fitness cost of insecticide resistance.


Subject(s)
Hemiptera/drug effects , Insecticide Resistance/drug effects , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Oryza/parasitology , Peroxiredoxins/physiology , Adaptation, Biological/drug effects , Adaptation, Biological/genetics , Alleles , Animals , Chromosome Mapping , Gene Expression Regulation, Enzymologic/drug effects , Genes, Insect/drug effects , Genes, Modifier/drug effects , Genes, Modifier/physiology , Genetic Association Studies , Genetic Fitness/drug effects , Hemiptera/physiology , Insecticide Resistance/genetics , Insecticides/pharmacology , Oryza/drug effects , Peroxiredoxins/genetics , Reactive Oxygen Species/metabolism , Toxicity Tests
3.
Cereb Cortex ; 33(11): 6818-6833, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36702485

ABSTRACT

Opportunities to persuade and be persuaded are ubiquitous. What interpersonal neural pathway in real-world settings determining successful information propagation in naturalistic two-person persuasion scenarios? Hereby, we extended prior research on a naturalistic dyadic persuasion paradigm (NDP) using dual-fNIRS protocol simultaneously measured the neural activity from persuader-receiver dyads while they engaged in a modified "Arctic Survival Task." Investigating whether neural coupling between persuaders and receivers underpinning of persuading and predict persuasion outcomes (i.e., receiver's compliance). Broadly, we indicated that the persuasive arguments increase neural coupling significantly compared to non-persuasive arguments in the left superior temporal gyrus-superior frontal gyrus and superior frontal gyrus-inferior frontal gyrus. G-causality indices further revealed the coupling directionality of information flows between the persuader and receiver. Critically, the neural coupling could be a better predictor of persuasion outcomes relative to traditional self-report measures. Eventually, temporal dynamics neural coupling incorporating video recording revealed neural coupling marked the micro-level processes in response to persuading messages and possibly reflecting the time that persuasion might occurs. The initial case of the arguments with targeted views is valuable as the first step in encouraging the receiver's compliance. Our investigation represented an innovative interpersonal approach toward comprehending the neuroscience and psychology underlying complex and true persuasion.


Subject(s)
Persuasive Communication , Prefrontal Cortex , Humans , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Neural Pathways
4.
Cereb Cortex ; 33(13): 8465-8476, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37083271

ABSTRACT

Recent studies suggest that corrupt collaboration (i.e. acquiring private benefits with joint immoral acts) represents a dilemma between the honesty and reciprocity norms. In this study, we asked pairs of participants (labeled as A and B) to individually toss a coin and report their outcomes; their collective benefit could be maximized by dishonestly reporting (a corrupt behavior). As expected, the likelihood of corrupt behavior was high; this probability was negatively correlated with player A's moral judgment ability but positively correlated with player B's empathic concern (EC). Functional near-infrared spectroscopy data revealed that the brain-to-brain synchronization in the right dorsolateral prefrontal cortex was associated with fewer corrupt behaviors, and that it mediated the relationship between player A's moral judgment ability and corrupt collaboration. Meanwhile, the right temporal-parietal junction synchronization was associated with more corrupt behaviors, and that it mediated the relationship between player B's EC and corrupt collaboration. The roles of these 2 regions are interpreted according to the influence of the honesty and reciprocity norms on corrupt collaboration. In our opinion, these findings provide insight into the underlying mechanisms and modulating factors of corrupt collaboration.


Subject(s)
Brain , Judgment , Humans , Morals
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443170

ABSTRACT

Invasive organisms pose a global threat and are exceptionally difficult to eradicate after they become abundant in their new habitats. We report a successful multitactic strategy for combating the pink bollworm (Pectinophora gossypiella), one of the world's most invasive pests. A coordinated program in the southwestern United States and northern Mexico included releases of billions of sterile pink bollworm moths from airplanes and planting of cotton engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). An analysis of computer simulations and 21 y of field data from Arizona demonstrate that the transgenic Bt cotton and sterile insect releases interacted synergistically to reduce the pest's population size. In Arizona, the program started in 2006 and decreased the pest's estimated statewide population size from over 2 billion in 2005 to zero in 2013. Complementary regional efforts eradicated this pest throughout the cotton-growing areas of the continental United States and northern Mexico a century after it had invaded both countries. The removal of this pest saved farmers in the United States $192 million from 2014 to 2019. It also eliminated the environmental and safety hazards associated with insecticide sprays that had previously targeted the pink bollworm and facilitated an 82% reduction in insecticides used against all cotton pests in Arizona. The economic and social benefits achieved demonstrate the advantages of using agricultural biotechnology in concert with classical pest control tactics.


Subject(s)
Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis/genetics , Disease Eradication/methods , Gossypium/genetics , Moths/genetics , Pest Control, Biological/methods , Animals , Animals, Genetically Modified , Arizona , Bacillus thuringiensis Toxins/metabolism , Computer Simulation , Disease Eradication/economics , Infertility/genetics , Insecticides/metabolism , Mexico , Moths/growth & development , Moths/pathogenicity , Plants, Genetically Modified , Southwestern United States
6.
Pestic Biochem Physiol ; 198: 105744, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225087

ABSTRACT

Cry2Ab is one of the important alternative Bt proteins that can be used to manage insect pests resistant to Cry1A toxins and to expand the insecticidal spectrum of pyramided Bt crops. Previous studies have showed that vacuolar H+-ATPase subunits A and B (V-ATPase A and B) may be involved in Bt insecticidal activities. The present study investigated the role of V-ATPases subunit E in the toxicity of Cry2Ab in Helicoverpa amigera. RT-PCR analysis revealed that oral exposure of H. amigera larvae to Cry2Ab led to a significant reduction in the expression of H. armigera V-ATPase E (HaV-ATPase E). Ligand blot, homologous and heterologous competition experiments confirmed that HaV-ATPases E physically and specifically bound to activated Cry2Ab toxin. Heterologous expressing of HaV-ATPase E in Sf9 cells made the cell line more susceptible to Cry2Ab, whereas knockdown of the endogenous V-ATPase E in H. zea midgut cells decreased Cry2Ab's cytotoxicity against this cell line. Further in vivo bioassay showed that H. armigera larvae fed a diet overlaid with both Cry2Ab and E. coli-expressed HaV-ATPase E protein suffered significantly higher mortality than those fed Cry2Ab alone. These results support that V-ATPases E is a putative receptor of Cry2Ab and can be used to improve Cry2Ab toxicity and manage Cry2Ab resistance at least in H. armigera.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Helicoverpa armigera , Endotoxins/toxicity , Endotoxins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Escherichia coli , Bacillus thuringiensis Toxins/metabolism , Moths/genetics , Moths/metabolism , Larva/metabolism , Insecticides/toxicity , Insecticides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/toxicity , Hemolysin Proteins/metabolism , Bacillus thuringiensis/metabolism , Insecticide Resistance
7.
Neuroimage ; 270: 119957, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36822251

ABSTRACT

Effective influence management during advice-giving requires individuals to express confidence in the advice properly and switch timely between the 'competitive' strategy and the 'defensive' strategy. However, how advisers switch between these two strategies, and whether and why there exist individual differences during this process remain elusive. We used an advice-giving game that manipulated incentive contexts (Incentivized/Non-Incentivized) to induce the adviser's confidence expression strategy switching and measured the brain activities of adviser and advisee concurrently using functional near-infrared spectroscopy (fNIRS). Behaviorally, we observed individual differences in strategy switching. Some advisers applied the 'defensive' strategy when incentivized and the 'competitive' strategy when not incentivized, while others applied the 'competitive' strategy when incentivized and the 'defensive' strategy when not incentivized. This effect was mediated by the adviser's perceived stress in each condition and was reflected by the frequencies of advice-taking in the advisees. Neurally, brain activation in the dorsolateral prefrontal cortex (DLPFC) supported strategy switching, as well as interpersonal neural synchronization (INS) in the temporoparietal junction (TPJ) that supported influence management. This two-in-one process, i.e., confidence expression strategy switching and the corresponding influence management, was linked and modulated by the strength of DLPFC-TPJ functional connectivity in the adviser. We further developed a descriptive model that contributed to understanding the adviser's strategy switching during influence management.


Subject(s)
Brain , Motivation , Humans , Mental Processes , Brain Mapping/methods , Prefrontal Cortex/physiology
8.
Neuroimage ; 279: 120339, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37611814

ABSTRACT

Information exchange is a key factor in the attainment of collective outcomes and the navigation of social life. In the current study, we investigated whether and how information exchange enhanced collective performance by combining behavioral and neuroimaging approaches from the perspective of multiparticipant neuroscience. To evaluate collective performance, we measured the collaborative problem-solving abilities of triads working on a murder mystery case. We first found that verbal information exchange significantly enhanced collective performance compared to nonverbal exchange. Moreover, both group sharing and group discussion positively contributed to this effect, with group discussion being more essential. Importantly, group identification mediated the positive effect of verbal information exchange on collective performance. This mediation was supported by higher interactive frequency and enhanced within-group neural synchronization (GNS) in the dorsolateral prefrontal cortex (DLPFC). Taken together, we provided a multiparticipant theoretical model to explain how verbal information exchange enhanced collective performance. Our findings deepen the insight into the workings of group decision-making.


Subject(s)
Neurosciences , Social Identification , Humans , Decision Making , Dorsolateral Prefrontal Cortex , Neuroimaging
9.
Hum Brain Mapp ; 44(12): 4535-4544, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37357970

ABSTRACT

Previous findings have shown a strong relationship between sports and interpersonal cooperative behavior. Physical activity is the basic form of sport. In this study, we investigated the effect of physical activity on interpersonal cooperative behavior and its inter-brain correlates. Eighty college students were recruited and randomly divided into the experimental or control group (20 dyads per each). The experimental group performed a 30-min of moderate intensity single-person cycling exercise, while the control group performed a 30-min single-person sitting. Interpersonal cooperative behavior was measured by a Prisoner's Dilemma task before and after the intervention, while neural activities in the frontal cortex in each dyad were measured by the near-infrared spectroscopy-based hyperscanning approach. The results showed that the average cooperation rate and cooperation efficiency of the experimental dyads were significantly higher after the exercise intervention compared to that before intervention, but not in control group. Meanwhile, the interpersonal neural synchronization (INS) in the left frontal cortex was significantly increased after intervention only in experimental dyads. Moreover, the INS increased in left frontal cortex was positively correlated with the cooperation improvement. Taken together, these results indicate that one single-person bicycling can improve interpersonal cooperation behavior, which may be associated with enhanced interpersonal neural synchronization in the left frontal cortex.


Subject(s)
Bicycling , Brain , Humans , Brain Mapping/methods , Cooperative Behavior , Frontal Lobe/diagnostic imaging , Interpersonal Relations
10.
Langmuir ; 39(43): 15369-15379, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37862119

ABSTRACT

NO reduction over highly dispersed zerovalent iron (Fe0) supported on graphene (G), with and without the presence of CO in the reacting stream, was systematically studied using a fixed-bed reactor, and the reaction mechanism was examined with the aid of in situ Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations. The in situ FTIR results showed that NO adsorbed on the Fe0 site is reduced to form active surface oxygen species (O*), which is then reduced by carbon in graphene to form CO2. The presence of CO in the reacting stream helps to reduce the oxidized Fe(O) sites to regenerate Fe0 sites, making NO reduction easier. It was revealed that NO and CO2 are easily adsorbed on the active surface oxygen species (O*) to form nitrate and carbonate, inhibiting their reduction by CO and deactivating the catalyst. The DFT calculations results suggest that the role of Fe is to reduce the energy barrier of the NO adsorption and decomposition, which controls the formation of active surface oxygen species and N2. The combined FTIR and DFT results offer new insights into the possible mechanism of catalytic NO reduction over graphene loaded with Fe, with and without CO.

11.
Hum Brain Mapp ; 43(12): 3646-3661, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35426965

ABSTRACT

Behavioral decision theory argues that humans can adjust their third-party responses (e.g., punishment and compensation) to injustice by integrating unfair experiences. Typically, the mood plays an important role in such a decision-making process. However, the underlying neurocognitive bases remain largely unclear. We first employ a modified third-party justice game in which an allocator split an amount of money between oneself and a receiver. The participants can reapportion the money as observers by choosing from the following three costly options: compensate the receiver, accept the current allocation, or punish the allocator. Then, a second-party pseudo interaction is conducted where participants receive more (i.e., advantageous unfair experience) or less (i.e., disadvantageous unfair experience) than others. Finally, participants perform the third-party justice game again after unfair experiences. Here, we use functional near-infrared spectroscopy (fNIRS) to measure participants' brain activities during third-party responses to injustice. We find participants compensate more to the receiver after advantageous unfair experience, which involved enhanced positive emotion, weakened sense of unfairness, and is linked with increased activity in the right dorsolateral prefrontal cortex (rDLPFC). In contrast, participants punish more on the allocator after disadvantageous unfair experience, which might primarily stem from their negative emotional responses, strong sense of unfairness, and is associated with significantly decreased activity in the rDLPFC. Our results suggest that third-party compensation and punishment involved differential psychological and neural bases. Our findings highlight the crucial roles of second-party unfair experiences and the corresponding mood responses in third-party responses to unfairness, and unravel the intermediate neural architecture.


Subject(s)
Decision Making , Punishment , Affect , Decision Making/physiology , Emotions , Humans , Punishment/psychology , Social Justice/psychology
12.
Hum Brain Mapp ; 43(9): 2992-3006, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35285571

ABSTRACT

Conceptual alignment is a prerequisite for mutual understanding. However, little is known about the neurophysiological brain-to-brain underpinning during conceptual alignment for mutual understanding. Here, we recorded multi-channel electroencephalogram (EEG) simultaneously from two participants in Experiment 1 and adopted the dual-tACS techniques in Experiment 2 to investigate the underlying brain-to-brain EEG coupling during conceptual alignment and the possible enhancement effect. Our results showed that 1) higher phase-locking value (PLV), a sensitive measure for quantifying neural coupling strength between EEG signals, at the gamma frequency band (28-40 Hz), was observed in the left temporoparietal site (left TP) area between successful versus unsuccessful conceptual alignment. The left TP gamma coupling strength correlated with the accuracy of conceptual alignment and differentiated whether subjects belonged to the SUCCESS or FAILURE groups in our study. 2) In-phase gamma-band transcranial alternating current stimulation (tACS) over the left TP area increased the accuracy of subjects in the SUCCESS group but not the FAILURE group. 3) The effect of perspective-taking on the accuracy was mediated by the gamma coupling strength within the left TP area. Our results support the role of gamma-band coupling between brains for interpersonal conceptual alignment. We provide dynamic interpersonal neurophysiological insights into the formation of successful communication.


Subject(s)
Transcranial Direct Current Stimulation , Brain/diagnostic imaging , Brain/physiology , Electroencephalography , Humans , Transcranial Direct Current Stimulation/methods
13.
Ecotoxicol Environ Saf ; 245: 114101, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36155334

ABSTRACT

Recent studies have indicated that the plant volatile methyl benzoate (MB) exhibits significant insecticidal bioactivity against several common insects. However, the potential environmental hazards of MB and its safety to non-target organisms is poorly understood. In the present study, these characteristics were investigated through laboratory experiments and field investigations. The results revealed that MB was highly toxic to the agricultural pest, fall armyworm Spodoptera frugiperda. Compared with the commercial pesticide lambda-cyhalothrin, the toxicities of MB against S. frugiperda larvae and adults were comparable and 3.41 times higher, respectively. Behavioral bioassays showed that the percentage repellency of MB to S. frugiperda larvae was 56.72 %, and MB induced 69.40 % oviposition deterrence rate in S. frugiperda female adults. Furthermore, in terms of median lethal concentration (LC50) and median lethal doses (LD50), MB exhibited non-toxic effects on non-target animals with 3-d LC50 of > 1 % to natural predators (Coccinella septempunctata and Harmonia axyridis), 3-d LD50 of 467.86 µg/bee to the bumblebee Bombus terrestris, 14-d LC50 of 971.09 mg/kg to the earthworm Eisenia fetida, and 4-d LC50 of 47.30 mg/L to the zebrafish Brachydanio rerio. The accumulation of MB in the soil and earthworms was found to be extremely limited. Our comparative study clearly demonstrated that MB is effective as a selective botanical pesticide against S. frugiperda and it is safe to use in the tested environment, with no toxic effects on non-target animals and natural predators.


Subject(s)
Coleoptera , Insecticides , Oligochaeta , Animals , Benzoates , Female , Insecticides/toxicity , Larva , Soil , Spodoptera , Zebrafish
14.
Brain Cogn ; 151: 105738, 2021 07.
Article in English | MEDLINE | ID: mdl-33915401

ABSTRACT

Although tend-and-befriend is believed to be the dominant stress response in women, little is known regarding the effects of acute psychosocial stress on different dynamic social interactions. To measure these effects, 80 female participants were recruited, paired into the dyads, and instructed to complete cooperative and competitive key-pressing tasks after experiencing acute stress or a control condition. Each dyad of participants should press the key synchronously when the signal was presented in the cooperative task and as fast as possible in the competitive task. During the tasks, brain activities of prefrontal and right temporo-parietal areas were recorded from each dyad using functional near-infrared spectroscopy (fNIRS). The results showed that acute psychosocial stress evidently promoted competitive behavior, accompanied by increased interpersonal neural synchronization (INS) in the right dorsolateral prefrontal cortex. Despite the lack of a significant difference in the overall cooperation rate, the response time difference between two stressed participants markedly declined over time with more widespread INS in the prefrontal cortex, suggesting that there ensued cooperative improvement among stressed women. These findings behaviorally and neurologically revealed context-dependent response patterns to psychosocial stress in women during dynamic social interactions.


Subject(s)
Cooperative Behavior , Interpersonal Relations , Brain Mapping , Female , Humans , Prefrontal Cortex , Spectroscopy, Near-Infrared , Stress, Psychological
15.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34445352

ABSTRACT

The Masculinizer (Masc) gene has been known to control sex development and dosage compensation in lepidopterans. However, it remains unclear whether its ortholog exists and plays the same roles in distantly related lepidopterans such as Helicoverpa armigera. To address this question, we cloned Masc from H. armigera (HaMasc), which contains all essential functional domains of BmMasc, albeit with less than 30% amino acid sequence identity with BmMasc. Genomic PCR and qPCR analyses showed that HaMasc is a Z chromosome-linked gene since its genomic content in males (ZZ) was two times greater than that in females (ZW). RT-PCR and RT-qPCR analyses revealed that HaMasc expression was sex- and stage-biased, with significantly more transcripts in males and eggs than in females and other stages. Transfection of a mixture of three siRNAs of HaMasc into a male embryonic cell line of H. armigera led to the appearance of female-specific mRNA splicing isoforms of H. armigeradoublesex (Hadsx), a downstream target gene of HaMasc in the H. armigera sex determination pathway. The knockdown of HaMasc, starting from the third instar larvae resulted in a shift of Hadsx splicing from male to female isoforms, smaller male pupa and testes, fewer but larger/longer spermatocytes and sperm bundles, delayed pupation and internal fusion of the testes and follicles. These data demonstrate that HaMasc functions as a masculinizing gene in the H. armigera sex-determination cascade.


Subject(s)
Insect Proteins/physiology , Moths/genetics , Sex Determination Processes/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Dosage Compensation, Genetic , Female , Insect Proteins/genetics , Larva , Male , Moths/classification , Phylogeny , RNA Isoforms , Sequence Analysis, DNA , Sex Chromosomes
16.
Semin Cancer Biol ; 55: 70-77, 2019 04.
Article in English | MEDLINE | ID: mdl-29705685

ABSTRACT

Malignancy of the pancreas is a leading cause of cancer-related mortality, with the highest case-fatality of all cancers. Nevertheless, the lack of sensitive biomarkers and presence of biological heterogeneity precludes its early detection and effective treatment. The recent introduction of next-generation sequencing allows characterization of multiple driver mutations at genome- and exome-wide levels. Sequencing of DNA and RNA from circulating tumour cells has also opened an exciting era of non-invasive procedures for tumour detection and prognostication. This massively-parallel sequencing technology has uncovered the previously obscure molecular mechanisms, providing clues for better stratification of patients and identification of druggable targets for the disease. Identification of active oncogenic pathways and gene-gene interactions may reveal oncogene addiction and synthetic lethality. Relevant findings can be extrapolated to develop targeted and personalized therapeutic interventions. In addition to known mutational events, the role of chromosomal rearrangements in pancreatic neoplasms is gradually uncovered. Coupled with bioinformatics pipelines and epidemiological analyses, a better framework for risk stratification and prognostication of pancreatic cancer will be possible in the near future. In this review, we discuss how translational genomic studies facilitate our understanding of pathobiology, and development of novel diagnostics and therapeutics for pancreatic ductal adenocarcinoma with emphases on whole genome sequencing, whole exome sequencing, and liquid biopsies. We have also re-analyzed The Cancer Genome Atlas (TCGA) dataset to look for genetic features associated with altered survival in patients with pancreatic ductal adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Translational Research, Biomedical/trends , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Exome/genetics , Gene Expression Regulation, Neoplastic , Genomics/trends , Humans , Mutation
17.
Hum Brain Mapp ; 41(17): 4964-4981, 2020 12.
Article in English | MEDLINE | ID: mdl-32808714

ABSTRACT

This study investigated the gender differences in deception and their neural basis in the perspective of two-person neuroscience. Both male and female dyads were asked to perform a face-to-face spontaneous sender-receiver deception task, while their neural activities in the prefrontal cortex (PFC) and right temporal parietal junction (rTPJ) were recorded simultaneously using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. Male and female dyads displayed similar deception rate, successful deception rate, and eye contact in deception trials. Moreover, eye contact in deception trials was positively correlated with the success rate of deception in both genders. The fNIRS data showed that the interpersonal neural synchronization (INS) in PFC was significantly enhanced only in female dyads when performed the deception task, while INS in rTPJ was increased only in male dyads. Such INS was correlated with the success rate of deception in both dyads. Granger causality analysis showed that no significant directionality between time series of PFC (or rTPJ) in each dyad, which could indicate that sender and receiver played equally important role during deception task. Finally, enhanced INS in PFC in female dyads mediated the contribution of eye contact to the success rate of deception. All findings in this study suggest that differential patterns of INS are recruited when male and female dyads perform the face-to-face deception task. To our knowledge, this is the first interbrain evidence for gender difference of successful deception, which could make us a deeper understanding of spontaneous face-to-face deception.


Subject(s)
Communication , Deception , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Social Interaction , Social Perception , Temporal Lobe/physiology , Adult , Female , Fixation, Ocular/physiology , Functional Neuroimaging , Humans , Male , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Sex Factors , Spectroscopy, Near-Infrared , Speech Perception/physiology , Temporal Lobe/diagnostic imaging , Young Adult
18.
Proc Natl Acad Sci U S A ; 114(21): 5413-5418, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28483999

ABSTRACT

Extensive cultivation of crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, these benefits are being eroded by evolution of resistance in pests. We report a strategy for combating resistance by crossing transgenic Bt plants with conventional non-Bt plants and then crossing the resulting first-generation (F1) hybrid progeny and sowing the second-generation (F2) seeds. This strategy yields a random mixture within fields of three-quarters of plants that produce Bt toxin and one-quarter that does not. We hypothesized that the non-Bt plants in this mixture promote survival of susceptible insects, thereby delaying evolution of resistance. To test this hypothesis, we compared predictions from computer modeling with data monitoring pink bollworm (Pectinophora gossypiella) resistance to Bt toxin Cry1Ac produced by transgenic cotton in an 11-y study at 17 field sites in six provinces of China. The frequency of resistant individuals in the field increased before this strategy was widely deployed and then declined after its widespread adoption boosted the percentage of non-Bt cotton plants in the region. The correspondence between the predicted and observed outcomes implies that this strategy countered evolution of resistance. Despite the increased percentage of non-Bt cotton, suppression of pink bollworm was sustained. Unlike other resistance management tactics that require regulatory intervention, growers adopted this strategy voluntarily, apparently because of advantages that may include better performance as well as lower costs for seeds and insecticides.


Subject(s)
Bacterial Proteins , Endotoxins , Gossypium/genetics , Hemolysin Proteins , Hybridization, Genetic , Moths , Animals , Bacillus thuringiensis Toxins , Insecticide Resistance , Plants, Genetically Modified
19.
Neuroimage ; 193: 93-102, 2019 06.
Article in English | MEDLINE | ID: mdl-30851445

ABSTRACT

Teacher-student interaction allows students to combine prior knowledge with new information to develop new knowledge. It is widely understood that both communication mode and students' knowledge state contribute to the teaching effectiveness (i.e., higher students' scores), but the nature of the interplay of these factors and the underlying neural mechanism remain unknown. In the current study, we manipulated the communication modes (face-to-face [FTF] communication mode/computer-mediated communication [CMC] mode) and prior knowledge states (with vs. without) when teacher-student dyads participated in a teaching task. Using functional near-infrared spectroscopy, the brain activities of both the teacher and student in the dyads were recorded simultaneously. After teaching, perceived teacher-student interaction and teaching effectiveness were assessed. The behavioral results demonstrated that, during teaching with prior knowledge, FTF communication improved students' academic performance, as compared with CMC. Conversely, no such effect was found for teaching without prior knowledge. Accordingly, higher task-related interpersonal neural synchronization (INS) in the left prefrontal cortex (PFC) was found in the FTF teaching condition with prior knowledge. Such INS mediated the relationship between perceived interaction and students' test scores. Furthermore, the cumulative INS in the left PFC could predict the teaching effectiveness early in the teaching process (around 25-35 s into the teaching task) only in FTF teaching with prior knowledge. These findings provide insight into how the interplay between the communication mode and students' knowledge state affects teaching effectiveness. Moreover, our findings suggest that INS could be a possible neuromarker for dynamic evaluation of teacher-student interaction and teaching effectiveness.


Subject(s)
Communication , Cortical Synchronization/physiology , Knowledge , Learning/physiology , Prefrontal Cortex/physiology , Teaching , Adult , Female , Humans , Male , Spectroscopy, Near-Infrared/methods , Young Adult
20.
Hum Brain Mapp ; 40(11): 3222-3232, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30950151

ABSTRACT

Individuals in pain are motivated to be cooperative in social interaction. Yet, there has been little research on how pain dynamically affects cooperation at a neural level. The present study investigated the cooperative behavior under acute physical pain by asking dyads to complete three blocks of button-press cooperative task, while neural activities were recorded simultaneously on each subject by the fNIRS-based hyperscanning. Results showed that individuals in pain improved their cooperation rate across task blocks. Accordingly, increased interpersonal neural synchronization (INS) was found at the left prefrontal cortex in second block, whereas increased INS was found at the right prefrontal cortex and the right parietal cortex in third block compared to the first block. Moreover, the change of INS in right parietal cortex was positively correlated with subjective pain rating in the pain treatment group. In addition, dynamic interpersonal neural networks were identified in painful condition with increasing frontoparietal networks across time. By uncovering dissociative neural processes involved in how pain affects cooperation in social interaction, the present work provides the first interbrain evidence to highlight the sociality of pain on social interaction in perspective of motivational aspect of pain.


Subject(s)
Brain/diagnostic imaging , Cooperative Behavior , Nerve Net/diagnostic imaging , Pain/diagnostic imaging , Adolescent , Female , Functional Neuroimaging , Humans , Interpersonal Relations , Pain/psychology , Pain Measurement , Spectroscopy, Near-Infrared , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL