Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569448

ABSTRACT

Early identification of tumors can significantly reduce the mortality rate. Circulating tumor cells (CTCs) are a type of tumor cell that detaches from the primary tumor and circulates through the bloodstream. Monitoring CTCs may allow the early identification of tumor progression. However, due to their rarity and heterogeneity, the enrichment and identification of CTCs is still challenging. Studies have shown that Raman spectroscopy could distinguish CTCs from metastatic cancer patients. VAR2CSA, a class of malaria proteins, has a strong broad-spectrum binding effect on various tumor cells and is a promising candidate biomarker for cancer detection. Here, recombinant malaria VAR2CSA proteins were synthesized, expressed, and purified. After confirming that various types of tumor cells can be isolated from blood by recombinant malaria VAR2CSA proteins, we further proved that the VAR2CSA combined with Raman spectroscopy could be used efficiently for tumor capture and type recognition using A549 cell lines spiked into the blood. This would allow the early screening and detection of a broad spectrum of CTCs. Finally, we synthesized and purified the malaria protein fusion antibody and confirmed its in vitro tumor-killing activity. Herein, this paper exploits the theoretical basis of a novel strategy to capture, recognize, and kill broad-spectrum types of CTCs from the peripheral blood.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Spectrum Analysis, Raman , Antibodies/chemistry , A549 Cells , Recombinant Proteins , Cell Line, Tumor , Biomarkers, Tumor
2.
Anal Chem ; 89(22): 12569-12577, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29099582

ABSTRACT

Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.


Subject(s)
Chlorophyceae/cytology , High-Throughput Screening Assays , Single-Cell Analysis , Cells, Cultured , Equipment Design , High-Throughput Screening Assays/instrumentation , Particle Size , Single-Cell Analysis/instrumentation , Spectrum Analysis, Raman/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL