Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int Immunopharmacol ; 132: 111900, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38531200

ABSTRACT

The precise mechanism of ferroptosis as a regulatory cell death in intestinal ischemia injury induced by vascular intestinal obstruction (Vio) remains to be elucidated. Here, we evaluated iron levels, glutathione peroxidase 4 (GPX4) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) changes after intestinal ischemia injury to validate ferroptosis. As an enzyme for Fe3+ reduction to Fe2+, Ferric Chelate Reductase 1 (FRRS1) is involved in the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. However, whether it is involved in ferroptosis and its role in intestinal ischemia injury need to be clarified. In the present study, FRRS1 was overexpressed in vivo and in vitro. The results showed that overexpression of FRRS1 prevented ischemia-induced iron levels, reactive oxygen species (ROS) production, lipid peroxidation, inflammatory responses, and cell death. Meanwhile, FRRS1 overexpression promoted GPX4 expression and suppressed ACSL4 levels. Further studies revealed that FRRS1 overexpression inhibited the activity of large tumor suppressor 1 (LATS1) / Yes-associated protein (YAP) / transcriptional co-activator with PDZ-binding motif (TAZ), a key component of Hippo signaling. In conclusion, this study demonstrates that FRRS1 is intimately involved in the inhibition of ferroptosis and thus protection of the intestine from intestinal ischemia injury, its downstream mechanism was related to Hippo signaling. These data provide new sight for the prevention and treatment of intestinal ischemia injury.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Hippo Signaling Pathway , Intestines , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Mice , Male , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intestines/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Ischemia/metabolism , YAP-Signaling Proteins/metabolism , Reactive Oxygen Species/metabolism , Humans
2.
Front Immunol ; 15: 1354926, 2024.
Article in English | MEDLINE | ID: mdl-39372399

ABSTRACT

Background: Severe acute pancreatitis (SAP) is characterized by inflammation, with inflammatory immune cells playing a pivotal role in disease progression. This study aims to understand variations in specific immune cell subtypes in SAP, uncover their mechanisms of action, and identify potential biological markers for predicting Acute Pancreatitis (AP) severity. Methods: We collected peripheral blood from 7 untreated SAP patients and employed single-cell RNA sequencing for the first time to construct a transcriptome atlas of peripheral blood mononuclear cells (PBMCs) in SAP. Integrating SAP transcriptomic data with 6 healthy controls from the GEO database facilitated the analysis of immune cell roles in SAP. We obtained comprehensive transcriptomic datasets from AP samples in the GEO database and identified potential biomarkers associated with AP severity using the "Scissor" tool in single-cell transcriptomic data. Results: This study presents the inaugural construction of a peripheral blood single-cell atlas for SAP patients, identifying 20 cell subtypes. Notably, there was a significant decrease in effector T cell subsets and a noteworthy increase in monocytes compared to healthy controls. Moreover, we identified a novel monocyte subpopulation expressing high levels of PPBP and PF4 which was significantly elevated in SAP. The proportion of monocyte subpopulations with high CCL3 expression was also markedly increased compared to healthy controls, as verified by flow cytometry. Additionally, cell communication analysis revealed insights into immune and inflammation-related signaling pathways in SAP patient monocytes. Finally, our findings suggest that the subpopulation with high CCL3 expression, along with upregulated pro-inflammatory genes such as S100A12, IL1B, and CCL3, holds promise as biomarkers for predicting AP severity. Conclusion: This study reveals monocytes' crucial role in SAP initiation and progression, characterized by distinct pro-inflammatory features intricately linked to AP severity. A monocyte subpopulation with elevated PPBP and CCL3 levels emerges as a potential biomarker and therapeutic target.


Subject(s)
Monocytes , Pancreatitis , Single-Cell Analysis , Humans , Pancreatitis/immunology , Pancreatitis/genetics , Pancreatitis/diagnosis , Pancreatitis/blood , Male , Female , Monocytes/immunology , Monocytes/metabolism , Biomarkers , Middle Aged , Transcriptome , Adult , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Chemokine CCL3/genetics , Chemokine CCL3/blood , Gene Expression Profiling , Sequence Analysis, RNA , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL