Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37796985

ABSTRACT

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Subject(s)
COVID-19 , Measles , Mumps , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Measles-Mumps-Rubella Vaccine , Antibodies, Viral , Broadly Neutralizing Antibodies , Immunoglobulin G , Mesocricetus , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
2.
Proc Natl Acad Sci U S A ; 119(42): e2123338119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36240321

ABSTRACT

5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.


Subject(s)
Interferon Type I , Virus Diseases , 5-Methylcytosine/metabolism , Animals , Antiviral Agents , DEAD Box Protein 58/metabolism , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , Interferons , Ligands , Mice , RNA Polymerase III , Virus Replication/genetics
3.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994646

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Subject(s)
Proline , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Development , Vesicular Stomatitis , Viral Vaccines , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Humans , Mice , Proline/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesicular Stomatitis/virology , Vesiculovirus/immunology , Viral Proteins/immunology , Viral Vaccines/immunology
4.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35895717

ABSTRACT

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles-Mumps-Rubella Vaccine , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Efficacy , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Measles-Mumps-Rubella Vaccine/genetics , Measles-Mumps-Rubella Vaccine/immunology , Mesocricetus , Mice , Mumps virus/genetics , Mumps virus/immunology , Proline/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
5.
Bioconjug Chem ; 35(5): 638-652, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38669628

ABSTRACT

Aberrant canonical NF-κB signaling has been implicated in diseases, such as autoimmune disorders and cancer. Direct disruption of the interaction of NEMO and IKKα/ß has been developed as a novel way to inhibit the overactivation of NF-κB. Peptides are a potential solution for disrupting protein-protein interactions (PPIs); however, they typically suffer from poor stability in vivo and limited tissue penetration permeability, hampering their widespread use as new chemical biology tools and potential therapeutics. In this work, decafluorobiphenyl-cysteine SNAr chemistry, molecular modeling, and biological validation allowed the development of peptide PPI inhibitors. The resulting cyclic peptide specifically inhibited canonical NF-κB signaling in vitro and in vivo, and presented positive metabolic stability, anti-inflammatory effects, and low cytotoxicity. Importantly, our results also revealed that cyclic peptides had huge potential in acute lung injury (ALI) treatment, and confirmed the role of the decafluorobiphenyl-based cyclization strategy in enhancing the biological activity of peptide NEMO-IKKα/ß inhibitors. Moreover, it provided a promising method for the development of peptide-PPI inhibitors.


Subject(s)
Acute Lung Injury , I-kappa B Kinase , Lipopolysaccharides , Peptides, Cyclic , I-kappa B Kinase/metabolism , I-kappa B Kinase/antagonists & inhibitors , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Mice , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Humans , NF-kappa B/metabolism , Protein Binding , Cyclization
6.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33688034

ABSTRACT

The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR-/-mice, IFNAR-/--hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Genetic Vectors , Measles virus , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/pathology , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Gene Expression , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunization , Immunogenicity, Vaccine , Measles virus/genetics , Measles virus/immunology , Mice , Mice, Transgenic , Rats , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/genetics
7.
J Med Virol ; 95(4): e28687, 2023 04.
Article in English | MEDLINE | ID: mdl-36941778

ABSTRACT

Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.


Subject(s)
COVID-19 , Cricetinae , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines , Pandemics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Measles virus/genetics , Proline , Antibodies, Viral
8.
J Virol ; 95(20): e0059221, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34379509

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Brain/virology , COVID-19/immunology , Cell Line , Cytokine Release Syndrome/prevention & control , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Humans , Immunogenicity, Vaccine , Lung/immunology , Lung/pathology , Lung/virology , Mesocricetus , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/enzymology , Vesicular stomatitis Indiana virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
9.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32999025

ABSTRACT

Human respiratory syncytial virus (RSV) is the leading viral cause of lower respiratory tract disease in infants and children worldwide. Currently, there are no FDA-approved vaccines to combat this virus. The large (L) polymerase protein of RSV replicates the viral genome and transcribes viral mRNAs. The L protein is organized as a core ring-like domain containing the RNA-dependent RNA polymerase and an appendage of globular domains containing an mRNA capping region and a cap methyltransferase region, which are linked by a flexible hinge region. Here, we found that the flexible hinge region of RSV L protein is tolerant to amino acid deletion or insertion. Recombinant RSVs carrying a single or double deletion or a single alanine insertion were genetically stable, highly attenuated in immortalized cells, had defects in replication and spread, and had a delay in innate immune cytokine responses in primary, well-differentiated, human bronchial epithelial (HBE) cultures. The replication of these recombinant viruses was highly attenuated in the upper and lower respiratory tracts of cotton rats. Importantly, these recombinant viruses elicited high levels of neutralizing antibody and provided complete protection against RSV replication. Taken together, amino acid deletions or insertions in the hinge region of the L protein can serve as a novel approach to rationally design genetically stable, highly attenuated, and immunogenic live virus vaccine candidates for RSV.IMPORTANCE Despite tremendous efforts, there are no FDA-approved vaccines for human respiratory syncytial virus (RSV). A live attenuated RSV vaccine is one of the most promising vaccine strategies for RSV. However, it has been a challenge to identify an RSV vaccine strain that has an optimal balance between attenuation and immunogenicity. In this study, we generated a panel of recombinant RSVs carrying a single and double deletion or a single alanine insertion in the large (L) polymerase protein that are genetically stable, sufficiently attenuated, and grow to high titer in cultured cells, while retaining high immunogenicity. Thus, these recombinant viruses may be promising vaccine candidates for RSV.


Subject(s)
Methyltransferases/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Vaccines, Attenuated/immunology , Viral Proteins/genetics , Viral Proteins/immunology , A549 Cells , Amino Acids , Animals , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Cytokines/metabolism , Humans , Lung/pathology , Lung/virology , Methyltransferases/chemistry , Models, Molecular , RNA, Messenger , RNA-Dependent RNA Polymerase , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/prevention & control , Sigmodontinae , Vero Cells , Viral Proteins/chemistry , Virus Replication
10.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: mdl-32554698

ABSTRACT

The nonstructural protein 1 (NS1) of several flaviviruses, including West Nile, dengue, and yellow fever viruses, is capable of inducing variable degrees of protection against flavivirus infection in animal models. However, the immunogenicity of NS1 protein of Zika virus (ZIKV) is less understood. Here, we determined the efficacy of ZIKV NS1-based vaccine candidates using two delivery platforms, methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV) and a DNA vaccine. We first show that expression of ZIKV NS1 could be significantly enhanced by optimizing the signal peptide. A single dose of mtdVSV-NS1-based vaccine or two doses of DNA vaccine induced high levels of NS1-specfic antibody and T cell immune responses but provided only partial protection against ZIKV viremia in BALB/c mice. In Ifnar1-/- mice, neither NS1-based vaccine provided protection against a lethal high dose (105 PFU) ZIKV challenge, but mtdVSV-NS1-based vaccine prevented deaths from a low dose (103 PFU) challenge, though they experienced viremia and body weight loss. We conclude that ZIKV NS1 alone conferred substantial, but not complete, protection against ZIKV infection. Nevertheless, these results highlight the value of ZIKV NS1 for vaccine development.IMPORTANCE Most Zika virus (ZIKV) vaccine research has focused on the E or prM-E proteins and the induction of high levels of neutralizing antibodies. However, these ZIKV neutralizing antibodies cross-react with other flaviviruses, which may aggravate the disease via an antibody-dependent enhancement (ADE) mechanism. ZIKV NS1 protein may be an alternative antigen for vaccine development, since antibodies to NS1 do not bind to the virion, thereby eliminating the risk of ADE. Here, we show that recombinant VSV and DNA vaccines expressing NS1, alone, confer partial protection against ZIKV infection in both immunocompetent and immunodeficient mice, highlighting the value of NS1 as a potential vaccine candidate.


Subject(s)
Vaccines, DNA/immunology , Vesicular stomatitis Indiana virus/immunology , Viral Nonstructural Proteins/immunology , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Reactions , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Vaccines, DNA/genetics , Vesicular Stomatitis/prevention & control , Viral Nonstructural Proteins/genetics , Zika Virus Infection/virology
11.
J Virol ; 90(16): 7323-7338, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27252537

ABSTRACT

UNLABELLED: Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo IMPORTANCE: The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus replication and pathogenesis in vivo Recombinant hMPVs lacking phosphorylation in M2-1 exhibited limited replication in the upper and lower respiratory tract and triggered strong protective immunity in cotton rats. This work highlights the important role of M2-1 phosphorylation in viral replication and that inhibition of M2-1 phosphorylation may serve as a novel approach to develop live attenuated vaccines as well as antiviral drugs for pneumoviruses.


Subject(s)
Metapneumovirus/physiology , Protein Processing, Post-Translational , Viral Matrix Proteins/metabolism , Virus Replication , Amino Acid Substitution , Animals , Cell Line , Disease Models, Animal , Humans , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Paramyxoviridae Infections/pathology , Paramyxoviridae Infections/virology , Phosphorylation , RNA, Messenger/biosynthesis , RNA, Viral/biosynthesis , Reverse Genetics , Sigmodontinae , Viral Matrix Proteins/genetics , Virulence
12.
J Virol ; 89(12): 6391-405, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855728

ABSTRACT

UNLABELLED: Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. IMPORTANCE: The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Despite major efforts, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that the zinc binding activity of M2-1 is essential for virus replication and pathogenesis in vivo. Recombinant hMPVs that lacked zinc binding activity were not only defective in replication in the upper and lower respiratory tract but also triggered a strong protective immunity in cotton rats. Thus, inhibition of M2-1 zinc binding activity can lead to the development of novel, live attenuated vaccines, as well as antiviral drugs for pneumoviruses.


Subject(s)
Carrier Proteins/metabolism , Metapneumovirus/physiology , Viral Proteins/metabolism , Virus Replication , Zinc/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Disease Models, Animal , Female , Humans , Metapneumovirus/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Paramyxoviridae Infections/pathology , Paramyxoviridae Infections/virology , Protein Binding , Protein Multimerization , Sigmodontinae , Viral Proteins/genetics
13.
J Virol ; 89(11): 6121-5, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25787280

ABSTRACT

Porcine epidemic diarrhea coronavirus (PEDV) has significantly damaged America's pork industry. Here we investigate the receptor usage and cell entry of PEDV. PEDV recognizes protein receptor aminopeptidase N from pig and human and sugar coreceptor N-acetylneuraminic acid. Moreover, PEDV infects cells from pig, human, monkey, and bat. These results support the idea of bats as an evolutionary origin for PEDV, implicate PEDV as a potential threat to other species, and suggest antiviral strategies to control its spread.


Subject(s)
CD13 Antigens/metabolism , N-Acetylneuraminic Acid/metabolism , Porcine epidemic diarrhea virus/physiology , Receptors, Virus/metabolism , Virus Attachment , Virus Internalization , Animals , Chiroptera , Haplorhini , Humans , Receptors, Coronavirus , Swine
14.
J Virol ; 88(9): 5122-37, 2014 May.
Article in English | MEDLINE | ID: mdl-24574391

ABSTRACT

UNLABELLED: Human norovirus (NoV) accounts for 95% of nonbacterial gastroenteritis worldwide. Currently, there is no vaccine available to combat human NoV as it is not cultivable and lacks a small-animal model. Recently, we demonstrated that recombinant vesicular stomatitis virus (rVSV) expressing human NoV capsid protein (rVSV-VP1) induced strong immunities in mice (Y. Ma and J. Li, J. Virol. 85:2942-2952, 2011). To further improve the safety and efficacy of the vaccine candidate, heat shock protein 70 (HSP70) was inserted into the rVSV-VP1 backbone vector. A second construct was generated in which the firefly luciferase (Luc) gene was inserted in place of HSP70 as a control for the double insertion. The resultant recombinant viruses (rVSV-HSP70-VP1 and rVSV-Luc-VP1) were significantly more attenuated in cell culture and viral spread in mice than rVSV-VP1. At the inoculation dose of 1.0 × 10(6) PFU, rVSV-HSP70-VP1 triggered significantly higher vaginal IgA than rVSV-VP1 and significantly higher fecal and vaginal IgA responses than rVSV-Luc-VP1, although serum IgG and T cell responses were similar. At the inoculation dose of 5.0 × 10(6) PFU, rVSV-HSP70-VP1 stimulated significantly higher T cell, fecal, and vaginal IgA responses than rVSV-VP1. Fecal and vaginal IgA responses were also significantly increased when combined vaccination of rVSV-VP1 and rVSV-HSP70 was used. Collectively, these data indicate that (i) insertion of an additional gene (HSP70 or Luc) into the rVSV-VP1 backbone further attenuates the VSV-based vaccine in vitro and in vivo, thus improving the safety of the vaccine candidate, and (ii) HSP70 enhances the human NoV-specific mucosal and T cell immunities triggered by a VSV-based human NoV vaccine. IMPORTANCE: Human norovirus (NoV) is responsible for more than 95% of acute nonbacterial gastroenteritis worldwide. Currently, there is no vaccine for this virus. Development of a live attenuated vaccine for human NoV has not been possible because it is uncultivable. Thus, a live vector-based vaccine may provide an alternative vaccine strategy. In this study, we developed a vesicular stomatitis virus (VSV)-based human NoV vaccine candidate. We constructed rVSV-HSP70-VP1, coexpressing heat shock protein (HSP70) and capsid (VP1) genes of human NoV, and rVSV-Luc-VP1, coexpressing firefly luciferase (Luc) and VP1 genes. We found that VSVs with a double gene insertion were significantly more attenuated than VSV with a single VP1 insertion (rVSV-VP1). Furthermore, we found that coexpression or coadministration of HSP70 from VSV vector significantly enhanced human NoV-specific mucosal immunity. Collectively, we developed an improved live vectored vaccine candidate for human NoV which will be useful for future clinical studies.


Subject(s)
Genetic Vectors , HSP70 Heat-Shock Proteins/immunology , Immunity, Mucosal , Norovirus/immunology , Vesiculovirus/genetics , Viral Vaccines/immunology , Animals , Capsid Proteins/genetics , Capsid Proteins/immunology , Female , Gastrointestinal Tract/immunology , Immunoglobulin A/analysis , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Norovirus/genetics , T-Lymphocytes/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vagina/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
15.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961063

ABSTRACT

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles virus/immunology , Measles virus/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mumps virus/immunology , Mumps virus/genetics , Mice, Knockout , Mesocricetus , Immunoglobulin A/immunology , Immunoglobulin A/blood
16.
Zhonghua Nei Ke Za Zhi ; 51(7): 513-5, 2012 Jul.
Article in Zh | MEDLINE | ID: mdl-22943821

ABSTRACT

OBJECTIVE: To explore the effects of proton pump inhibitors (PPIs) therapy on esophageal acid exposure of patients with gastroesophageal reflux disease (GERD), and the correlation of anxiety and depression with recurrence of acid-related symptoms after discontinuation of PPIs. METHODS: From February 2010 to June 2011, 28 patients with GERD diagnosed by ambulatory 24 h esophageal pH monitoring admitted to Beijing Jishuitan Hospital were treated with esomeprazole 20 mg 2 times/d for 8 weeks (male 16, female 12). Symptoms after drug discontinuation were monitored. Ambulatory 24 h esophageal pH monitoring was performed on patients, whose symptom recurred within 8 weeks after treatment. BMI, Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were detected. RESULTS: Among the 28 patients with GERD, 15 (53.6%) recurred symptoms after withdraw of PPIs. Compared with the asymptomatic group after withdraw of PPIs, the pretreatment duration of pH 4 (supine), 24 h total acid reflux time, number of time periods with acid reflux > 5 minutes, the maximal acid reflux time and 24 h total number of acid reflux in the symptomatic recurrence group were statistically significantly increased (11.7% vs 4.5%, 138.8 minutes vs 62.1 minutes, 6.0 vs 2.0, 27.0 minutes vs 12.4 minutes, 74.0 times vs 43.0 times, respectively, all P values < 0.05). There were no significant differences in BMI, SAS and SDS between the two groups. CONCLUSIONS: The basic level of esophageal acid exposure of patients with GERD before PPIs therapy may influence the esophageal acid exposure after PPIs therapy and then may affect the recurrence of symptoms. Although anxiety and depression is common in patients with GERD, it is not found that the recurrence of acid-related symptoms after the discontinuation of PPIs therapy is related to the anxiety and depression.


Subject(s)
Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/physiopathology , Proton Pump Inhibitors/therapeutic use , Adult , Aged , Anxiety/psychology , Depression/psychology , Esophageal pH Monitoring , Female , Gastroesophageal Reflux/psychology , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Prospective Studies , Recurrence
17.
J Infect Dis ; 201(2): 223-32, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20001600

ABSTRACT

Vertebrates vary in resistance and resilience to infectious diseases, and the mechanisms that regulate the trade-off between these often opposing protective processes are not well understood. Variability in the sensitivity of species to the induction of damaging inflammation in response to equivalent pathogen loads (resilience) complicates the use of animal models that reflect human disease. We found that induction of proinflammatory cytokines from macrophages in response to inflammatory stimuli in vitro is regulated by proteins in the sera of species in inverse proportion to their in vivo resilience to lethal doses of bacterial lipopolysaccharide over a range of 10,000-fold. This finding suggests that proteins in serum rather than intrinsic cellular differences may play a role in regulating variations in resilience to microbe-associated molecular patterns between species. The involvement of circulating proteins as key molecules raises hope that the process might be manipulated to create better animal models and potentially new drug targets.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Cardenolides/immunology , Escherichia coli Proteins/immunology , Immunity, Innate/immunology , Lipoproteins/immunology , Macrophages/immunology , Peptidoglycan/immunology , Saponins/immunology , Animals , Bacteremia/immunology , Cells, Cultured , Disease Models, Animal , Humans , Macrophage Activation/immunology , Mice , Species Specificity
18.
ACS Chem Neurosci ; 12(9): 1506-1518, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33861582

ABSTRACT

MOTS-c is a 16-amino acid mitochondrial derivative peptide reported to be involved in regulating insulin and metabolic homeostasis via the AMP activated protein kinase (AMPK). AMPK agonist AICAR has been reported to improve cognition. Previous reports also pointed out that MOTS-c may be effective as a therapeutic option toward the prevention of the aging processes. Therefore, we investigated the roles of MOTS-c in the memory recognition process. The results showed that central MOTS-c not only enhanced object and location recognition memory formation and consolidation but also ameliorated the memory deficit induced by Aß1-42 or LPS. The memory-ameliorating effects of MOTS-c could be blocked by AMPK inhibitor dorsomorphin. Moreover, MOTS-c treatment significantly increased the phosphorylation of AMPK but not ERK, JNK, and p38 in the hippocampus. The underlying mechanism of MOTS-c neuroprotection may involve inhibiting the activation of astrocytes and microglia and production of proinflammatory cytokines. In addition, we found that peripheral administration of MOTS-c does not cross the blood-brain barrier (BBB) and plays an effect. In order to improve the brain intake of MOTS-c, we screen out (PRR)5, a cell penetrating peptides, as a carrier for MOTS-c into the brain. Then in the NOR task, intranasal or intravenous MP (cell-penetrating MOTS-c analogue) showed good memory performance on memory formation, memory consolidation, and memory impairment. Near-infrared fluorescent experiments showed the real-time biodistribution in brain after intranasal or intravenous infusion of MP. These results suggested that MOTS-c might be a new potential target for treatment of cognitive decline in AD.


Subject(s)
Amyloid beta-Peptides , Lipopolysaccharides , Humans , Lipopolysaccharides/toxicity , Memory Disorders/drug therapy , Peptide Fragments , Tissue Distribution
19.
Nat Microbiol ; 5(4): 584-598, 2020 04.
Article in English | MEDLINE | ID: mdl-32015498

ABSTRACT

Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.


Subject(s)
Adenosine/analogs & derivatives , DEAD Box Protein 58/genetics , Immune Evasion/genetics , Interferon-beta/genetics , Metapneumovirus/immunology , RNA, Viral/genetics , A549 Cells , Adenosine/immunology , Adenosine/metabolism , Animals , Chlorocebus aethiops , DEAD Box Protein 58/immunology , Gene Expression Regulation , Genome, Viral/immunology , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-beta/immunology , Metapneumovirus/genetics , Metapneumovirus/growth & development , NF-kappa B/genetics , NF-kappa B/immunology , Paramyxoviridae Infections/genetics , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/virology , RNA, Viral/immunology , Receptors, Immunologic , Sigmodontinae , Signal Transduction , THP-1 Cells , Vero Cells , Virion/genetics , Virion/growth & development , Virion/immunology
20.
Viruses ; 11(5)2019 05 16.
Article in English | MEDLINE | ID: mdl-31100802

ABSTRACT

Human norovirus (HuNoV) is responsible for more than 95% of outbreaks of acute nonbacterial gastroenteritis worldwide. Despite major efforts, there are no vaccines or effective therapeutic interventions against this virus. Chicken immunoglobulin Y (IgY)-based passive immunization has been shown to be an effective strategy to prevent and treat many enteric viral diseases. Here, we developed a highly efficient bioreactor to generate high titers of HuNoV-specific IgY in chicken yolks using a recombinant vesicular stomatitis virus expressing HuNoV capsid protein (rVSV-VP1) as an antigen. We first demonstrated that HuNoV VP1 protein was highly expressed in chicken cells infected by rVSV-VP1. Subsequently, we found that White Leghorn hens immunized intramuscularly with rVSV-VP1 triggered a high level of HuNoV-specific yolk IgY antibodies. The purified yolk IgY was efficiently recognized by HuNoV virus-like particles (VLPs). Importantly, HuNoV-specific IgY efficiently blocked the binding of HuNoV VLPs to all three types (A, B, and O) of histo-blood group antigens (HBGAs), the attachment factors for HuNoV. In addition, the receptor blocking activity of IgY remained stable at temperature below 70 °C and at pH ranging from 4 to 9. Thus, immunization of hens with VSV-VP1 could be a cost-effective and practical strategy for large-scale production of anti-HuNoV IgY antibodies for potential use as prophylactic and therapeutic treatment against HuNoV infection.


Subject(s)
Chickens/immunology , Egg Yolk/immunology , Immunoglobulins/immunology , Norovirus/immunology , Vaccination , Vesicular Stomatitis/virology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Blood Group Antigens , Caliciviridae Infections/immunology , Capsid Proteins , Female , Gastroenteritis/virology , Gene Expression Regulation, Viral , Humans , Immunization , Immunization, Passive , Kinetics , Viral Structural Proteins
SELECTION OF CITATIONS
SEARCH DETAIL