Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 16(19): e2000903, 2020 May.
Article in English | MEDLINE | ID: mdl-32309909

ABSTRACT

Tin-based perovskite, which exhibits narrower bandgap and comparable photophysical properties to its lead analogs, is one of the most forward-looking lead-free semiconductor materials. However, the poor oxidative stability of tin perovskite hinders the development toward practical application. In this work, the effect of pseudohalide anions on the stability and emission properties of single-layer 2D tin perovskite nanoplates with chemical formula TEA2 SnI4 (TEA = 2-thiophene-ethylammonium) is reported. The results reveal that ammonium thiocyanate (NH4 SCN) is the most effective additive in enhancing the stability and photoluminescence quantum yield of 2D TEA2 SnI4 (23 ± 3%). X-Ray photoelectron spectroscopic investigations on the thiocyanate passivated TEA2 SnI4 nanoplate show less than a 1% increase of Sn4+ signal upon 30 min exposure to air under ambient conditions (298 K, humidity ≈70%). Furthermore, no noticeable decrease in emission intensity of the nanoplate is observed after 20 h in air. The SCN- passivation during the growth stage of TEA2 SnI4 is proposed to play a crucial role in preventing the oxidation of Sn2+ and hence boosts both stability and photoluminescence yield of tin perovskite nanoplates.

2.
J Am Chem Soc ; 141(26): 10324-10330, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31244186

ABSTRACT

Tin perovskite nanomaterial is one of the promising candidates to replace organic lead halide perovskites in lighting applications. Unfortunately, the performance of tin-based systems is markedly inferior to those featuring toxic Pb salts. In an effort to improve the emission quantum efficiency of nanoscale 2D layered tin iodide perovskites through fine-tuning the electronic property of organic ammonium salts, we came to unveil the relationship between dielectric confinement and the photoluminescent properties of tin iodide perovskite nanodisks. Our results show that increasing the dielectric contrast for organic versus inorganic layers leads to a bathochromic shift in emission peak wavelength, a decrease of exciton recombination time, and importantly a significant boost in the emission efficiency. Under optimized conditions, a leap in emission quantum yield to a record high 21% was accomplished for the nanoscale thienylethylammonium tin iodide perovskite (TEA2SnI4). The as-prepared TEA2SnI4 also possessed superior photostability, showing no sign of degradation under continuous irradiation (10 mW/cm2) over a period of 120 h.

3.
RSC Adv ; 10(40): 23834-23841, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517310

ABSTRACT

Organic fluorescent molecules play critical roles in fluorescence inspection, biological probes, and labeling indicators. More than ten thousand organic fluorescent molecules were imported in this study, followed by a machine learning based approach for extracting the intrinsic structural characteristics that were found to correlate with the fluorescence emission. A systematic informatics procedure was introduced, starting from descriptor cleaning, descriptor space reduction, and statistical-meaningful regression to build a broad and valid model for estimating the fluorescence emission wavelength. The least absolute shrinkage and selection operator (Lasso) regression coupling with the random forest model was finally reported as the numerical predictor as well as being fulfilled with the statistical criteria. Such an informatics model appeared to bring comparable predictive ability, being complementary to the conventional time-dependent density functional theory method in emission wavelength prediction, however, with a fractional computational expense.

SELECTION OF CITATIONS
SEARCH DETAIL