Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nucleic Acids Res ; 51(D1): D1019-D1028, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36130266

ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) is one of the most used single-cell omics in recent decades. The exponential growth of single-cell data has immense potential for large-scale integration and in-depth explorations that are more representative of the study population. Efforts have been made to consolidate published data, yet extensive characterization is still lacking. Many focused on raw-data database constructions while others concentrate mainly on gene expression queries. Hereby, we present HTCA (www.htcatlas.org), an interactive database constructed based on ∼2.3 million high-quality cells from ∼3000 scRNA-seq samples and comprised in-depth phenotype profiles of 19 healthy adult and matching fetal tissues. HTCA provides a one-stop interactive query to gene signatures, transcription factor (TF) activities, TF motifs, receptor-ligand interactions, enriched gene ontology (GO) terms, etc. across cell types in adult and fetal tissues. At the same time, HTCA encompasses single-cell splicing variant profiles of 16 adult and fetal tissues, spatial transcriptomics profiles of 11 adult and fetal tissues, and single-cell ATAC-sequencing (scATAC-seq) profiles of 27 adult and fetal tissues. Besides, HTCA provides online analysis tools to perform major steps in a typical scRNA-seq analysis. Altogether, HTCA allows real-time explorations of multi-omics adult and fetal phenotypic profiles and provides tools for a flexible scRNA-seq analysis.


Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Sequence Analysis, RNA , Single-Cell Analysis , Software , Databases, Genetic
2.
Ecotoxicol Environ Saf ; 249: 114425, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321695

ABSTRACT

Available evidence suggest that exposure to PM2.5 during pregnancy is associated with reduced cognitive function in offspring. This study aimed to investigate the effects of maternal exposure to PM2.5 on offspring cognitive function and to elucidate the underlying mechanisms. In this work, pregnant C57BL/6 female mice were exposed to concentrated ambient PM2.5 or filtered air from day 0.5 (=vaginal plug) to day 15.5 in the Shanghai Meteorological and Environmental Animal Exposure System, and offspring cerebellar tissues were collected on embryonic day 15.5, as well as postnatal days 0, 10 and 42. The mean PM2.5 concentrations exposed to the pregnant mice were 73.06 ± 4.90 µg/m3 and 11.15 ± 2.71 µg/m3 in the concentrated ambient PM2.5 and filtered air chambers, respectively. Maternal concentrated PM2.5 exposure was negatively correlated with offspring spatial memory significantly as assessed by the Morris water maze. Compared with the filtered air group, PM2.5-exposed offspring mice had reduced cerebellar microglia. Both RNA and protein levels of IL-8 and TNF-α were elevated in the concentrated ambient PM2.5 group. PM2.5 exposure increased the level of 8-OHG in miRNA of microglia and Purkinje cells in 6-week-old offspring. The level of prostaglandin F2α (8-iso-PGF2Aα) in the cerebellum was increased at different growing stages of offspring after gestational exposure of PM2.5. These results suggested that maternal air pollution exposure might cause inflammatory damage and oxidative stress to the cerebellum, contributing to reduced cognitive performance in mice offspring.


Subject(s)
Air Pollutants , Cognitive Dysfunction , Humans , Pregnancy , Female , Mice , Animals , Maternal Exposure , Particulate Matter , Neuroinflammatory Diseases , Mice, Inbred C57BL , China , Oxidative Stress , Cerebellum
3.
Pharmacol Res ; 186: 106522, 2022 12.
Article in English | MEDLINE | ID: mdl-36283629

ABSTRACT

Cancer is complicated to treat because of its high propensity for recurrence and metastasis, and various side effects of conventional cancer treatments. With the development of nanotechnology, biology, material science and pharmacy, nanoparticles emerge as a promising method to load anti-cancer drugs to deal with the downsides of conventional treatments. Among the various class of nanoparticles, endogenous stimuli-responsive nanoparticles exert significant anti-cancer effects by releasing drugs due to the stimulations from pH gradient, redox as well as other enzymes of cancer microenvironment. Extraordinary progress has been achieved as the latest endogenous stimuli-responsive nanoparticles exhibit better therapeutic effects, lower toxicity, and superior biocompatibility, indicating brighter prospects for cancer therapy. However, these stimuli-responsive nanoparticles are still not ready for large-scale clinical application, due to reasons such as the lack of clinical trials and high cost of manufacturing. Here, we consolidate the advancements and limitations of various endogenous stimuli-responsive nanoparticles, as well as critically discuss the prospects of this kind of nanoparticles in tumor treatments.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Drug Delivery Systems , Nanoparticles/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Nanotechnology , Drug Carriers/therapeutic use , Tumor Microenvironment
4.
Mol Cancer ; 18(1): 65, 2019 03 30.
Article in English | MEDLINE | ID: mdl-30927919

ABSTRACT

Field cancerization and metastasis are the leading causes for cancer recurrence and mortality in cancer patients. The formation of primary, secondary tumors or metastasis is greatly influenced by multifaceted tumor-stroma interactions, in which stromal components of the tumor microenvironment (TME) can affect the behavior of the cancer cells. Many studies have identified cytokines and growth factors as cell signaling molecules that aid cell to cell communication. However, the functional contribution of reactive oxygen species (ROS), a family of volatile chemicals, as communication molecules are less understood. Cancer cells and various tumor-associated stromal cells produce and secrete a copious amount of ROS into the TME. Intracellular ROS modulate cell signaling cascades that aid in the acquisition of several hallmarks of cancers. Extracellular ROS help to propagate, amplify, and effectively create a mutagenic and oncogenic field which facilitate the formation of multifoci tumors and act as a springboard for metastatic tumor cells. In this review, we summarize our current knowledge of ROS as atypical paracrine signaling molecules for field cancerization and metastasis. Field cancerization and metastasis are often discussed separately; we offer a model that placed these events with ROS as the focal instigating agent in a broader "seed-soil" hypothesis.


Subject(s)
Cell Communication , Neoplasm Metastasis , Neoplasms/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Humans , Neoplasms/metabolism , Signal Transduction
5.
Cell Immunol ; 343: 103729, 2019 09.
Article in English | MEDLINE | ID: mdl-29397066

ABSTRACT

There is much cellular heterogeneity in the tumor microenvironment. The tumor epithelia and stromal cells co-evolve, and this reciprocal relationship dictates almost every step of cancer development and progression. Despite this, many anticancer therapies are designed around druggable features of tumor epithelia, ignoring the supportive role of stromal cells. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of many tumor types. Numerous previous studies have highlighted a pro-tumorigenic role for CAFs via secretion of various growth factors, cytokines, chemokines, and the degradation of extracellular matrix. Recent works showed that CAFs secrete H2O2 to effect stromal-mediated field cancerization, transform primary epithelial cells, and aggravate cancer cell aggressiveness, in addition to inflammatory and mitogenic factors. Molecular characterization of CAFs also underscores the importance of Notch and specific nuclear receptor signaling in the activation of CAFs. This review consolidates recent findings of CAFs and highlights areas for future investigations.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms/pathology , Tumor Microenvironment , Animals , Cancer-Associated Fibroblasts/metabolism , Carcinogenesis , Humans , Neoplasms/immunology , Neoplasms/physiopathology
6.
Medicina (Kaunas) ; 55(9)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470636

ABSTRACT

Diabetes, a silent killer, is one of the most widely prevalent conditions of the present time. According to the 2017 International Diabetes Federation (IDF) statistics, the global prevalence of diabetes among the age group of 20-79 years is 8.8%. In addition, 1 in every 2 persons is unaware of the condition. This unawareness and ignorance lead to further complications. Pre-diabetes is the preceding condition of diabetes, and in most of the cases, this ultimately leads to the development of diabetes. Diabetes can be classified into three types, namely type 1 diabetes, type 2 diabetes mellitus (T2DM) and gestational diabetes. The diagnosis of both pre-diabetes and diabetes is based on glucose criteria; the common modalities used are fasting plasma glucose (FPG) test and oral glucose tolerance test (OGTT). A glucometer is commonly used by diabetic patients to measure blood glucose levels with fast and rather accurate measurements. A few of the more advanced and minimally invasive modalities include the glucose-sensing patch, SwEatch, eyeglass biosensor, breath analysis, etc. Despite a considerable amount of data being collected and analyzed regarding diabetes, the actual molecular mechanism of developing type 2 diabetes mellitus (T2DM) is still unknown. Both genetic and epigenetic factors are associated with T2DM. The complications of diabetes can predominantly be classified into two categories: microvascular and macrovascular. Retinopathy, nephropathy, and neuropathy are grouped under microvascular complications, whereas stroke, cardiovascular disease, and peripheral artery disease (PAD) belong to macrovascular complications. Unfortunately, until now, no complete cure for diabetes has been found. However, the treatment of pre-diabetes has shown significant success in preventing the further progression of diabetes. To prevent pre-diabetes from developing into T2DM, lifestyle intervention has been found to be very promising. Various aspects of diabetes, including the aforementioned topics, have been reviewed in this paper.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Prediabetic State , Adult , Aged , Blood Glucose/analysis , Diabetes Complications , Diabetes Mellitus, Type 2/diagnosis , Female , Glucose Tolerance Test , Humans , Hyperglycemia/diagnosis , Hyperglycemia/etiology , Insulin Resistance , Male , Middle Aged , Prediabetic State/complications , Prediabetic State/diagnosis , Prediabetic State/therapy , Risk Factors , Translational Research, Biomedical
7.
Int J Mol Sci ; 19(5)2018 May 10.
Article in English | MEDLINE | ID: mdl-29747466

ABSTRACT

Skeletal muscle comprises 30⁻40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies.


Subject(s)
Exercise/physiology , Metabolic Syndrome/genetics , Muscular Diseases/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Aging/genetics , Aging/pathology , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/therapy , Humans , Insulin Resistance/genetics , Lipid Metabolism/genetics , Metabolic Syndrome/physiopathology , Metabolic Syndrome/therapy , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Diseases/physiopathology , Muscular Diseases/therapy , Peroxisome Proliferator-Activated Receptors/biosynthesis , Physical Conditioning, Animal
8.
Genome Biol ; 25(1): 104, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641842

ABSTRACT

Single-cell sequencing datasets are key in biology and medicine for unraveling insights into heterogeneous cell populations with unprecedented resolution. Here, we construct a single-cell multi-omics map of human tissues through in-depth characterizations of datasets from five single-cell omics, spatial transcriptomics, and two bulk omics across 125 healthy adult and fetal tissues. We construct its complement web-based platform, the Single Cell Atlas (SCA, www.singlecellatlas.org ), to enable vast interactive data exploration of deep multi-omics signatures across human fetal and adult tissues. The atlas resources and database queries aspire to serve as a one-stop, comprehensive, and time-effective resource for various omics studies.


Subject(s)
Ascomycota , Multiomics , Adult , Humans , Databases, Factual , Fetus , Gene Expression Profiling
9.
Adv Healthc Mater ; 13(10): e2303481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37987244

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.


Subject(s)
Mechanotransduction, Cellular , Neoplasms , Humans , Cell Line, Tumor , Tumor Microenvironment , Mechanical Phenomena , Angiopoietins , Epithelial-Mesenchymal Transition/genetics , Neoplasms/drug therapy
10.
Clin Transl Med ; 13(8): e1384, 2023 08.
Article in English | MEDLINE | ID: mdl-37612832

ABSTRACT

Messenger ribonucleic acid (mRNA) vaccines are a relatively new class of vaccines that have shown great promise in the immunotherapy of a wide variety of infectious diseases and cancer. In the past 2 years, SARS-CoV-2 mRNA vaccines have contributed tremendously against SARS-CoV2, which has prompted the arrival of the mRNA vaccine research boom, especially in the research of cancer vaccines. Compared with conventional cancer vaccines, mRNA vaccines have significant advantages, including efficient production of protective immune responses, relatively low side effects and lower cost of acquisition. In this review, we elaborated on the development of cancer vaccines and mRNA cancer vaccines, as well as the potential biological mechanisms of mRNA cancer vaccines and the latest progress in various tumour treatments, and discussed the challenges and future directions for the field.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , Humans , Cancer Vaccines/genetics , Cancer Vaccines/therapeutic use , RNA, Viral , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines/therapeutic use , mRNA Vaccines , Neoplasms/therapy
11.
Environ Sci Pollut Res Int ; 30(12): 35142-35152, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36526934

ABSTRACT

Ambient fine particulate matter (PM2.5) exposures during pregnancy could lead to adverse birth outcomes, including neurobehavioral development defects. However, limited studies explored the effects and potential epigenetic mechanisms of maternal PM2.5 exposure on offspring spatial memory defects. This study aims to explore the effects and underlying epigenetic mechanisms of maternal concentrated ambient PM2.5 exposure in male mice offspring with spatial memory defects. Pregnant female C57BL/6 mice were exposed daily to concentrated ambient PM2.5 (CAP) or filtered air (FA) throughout gestation, with the concentration of particulates (102.99 ± 78.74 µg/m3) and (2.78 ± 1.19 µg/m3), respectively. Adult male mice offspring were subsequently assessed for spatial learning and memory ability using Morris Water Maze tests and locomotor activities in open field tests. The hippocampus of the male mice offspring was harvested to test mRNA expression and DNA methylation. Results from the probe test of Morris Water Maze showed that the mice offspring in the CAP group had shorter swimming distance travelled in the target quadrant, shorter duration in the target quadrant, and less number of entries into the target quadrant (p < 0.05), suggesting spatial memory impairments. The acquisition trials of Morris Water Maze did not show a significant difference in learning ability between the groups. The mRNA level of interleukin 6 (IL-6) in the CAP group hippocampus (10.80 ± 7.03) increased significantly compared to the FA group (1.08 ± 0.43). Interestingly, the methylation levels of the CpG sites in the IL-6 promoter region declined significantly in the CAP group, (5.66 ± 0.83)% vs. (4.79 ± 0.48)%. Prenatal exposure to concentrated ambient PM2.5 induced long-lasting spatial memory defects in male mice offspring. The underlying biological mechanism might be mediated by an inflammatory reaction which is regulated by DNA methylation.


Subject(s)
DNA Methylation , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Mice , Male , Female , Animals , Spatial Memory , Interleukin-6 , Mice, Inbred C57BL , Particulate Matter , Maternal Exposure/adverse effects
12.
World J Clin Pediatr ; 11(5): 408-418, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36185098

ABSTRACT

Children/adolescents with type 1 diabetes (T1D) require holistic approach and continuous care. However, the coronavirus disease 2019 (COVID-19) pandemic has made challenges for the T1D children and their caregivers, professionals, and the healthcare system. This minireview aims to consolidate and discuss the difficulties and solutions of children with type 1 diabetes in the COVID-19 pandemic. T1D has been the most common type of diabetes in children and adolescents and the last decades has seen a rapid increase in the prevalence of T1D in youths worldwide, which deserves a public concern particularly in the COVID-19 pandemic. As reported in previous studies, T1D is a risk factor related to severe cases, while the virus may induce new-onset diabetes and serious complications. Moreover, restriction strategies influence medical availability and lifestyle, impact glycemic control and compilation management, and thus pose stress on families and health providers of youths with T1D, especially on those with certain fragile conditions. Therefore, special treatment plans are required for children provided by caregivers and the local health system. Latest health tools such as improved medical devices and telemedicine service, as well as a combined support may benefit in this period. This minireview emphasises that continued medical access and support are required to prevent deteriorated condition of children and adolescents with diabetes throughout this pandemic. Therefore, strategies are supposed to be formulated to mitigate the difficulties and stress among this group, particularly in the most at-risk population. Proposed solutions in this minireview may help individuals and the health system to overcome these problems and help youths with T1D in better diabetes management during such emergency situations.

13.
World J Diabetes ; 13(4): 308-318, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35582668

ABSTRACT

Diabetic kidney disease (DKD) is one of the major chronic complications of diabetes mellitus (DM), as well as a main cause of end-stage renal disease. Over the last few years, substantial research studies have revealed a contributory role of gut microbiota in the process of DM and DKD. Metabolites of gut microbiota like lipopolysaccharide, short-chain fatty acids, and trimethylamine N-oxide are key mediators of microbial-host crosstalk. However, the underlying mechanisms of how gut microbiota influences the onset and progression of DKD are relatively unknown. Besides, strategies to remodel the composition of gut microbiota or to reduce the metabolites of microbiota have been found recently, representing a new potential remedial target for DKD. In this mini-review, we will address the possible contribution of the gut microbiota in the pathogenesis of DKD and its role as a therapeutic target.

14.
J Control Release ; 335: 437-448, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34081996

ABSTRACT

Cancer is one of the leading causes of mortality worldwide. Nanoparticles have been broadly studied and emerged as a novel approach in diagnosis and treatment of tumors. Over the last decade, researches have significantly improved magnetic nanoparticle (MNP)'s theranostic potential as nanomedicine for cancer. Newer MNPs have various advantages such as wider operating temperatures, smaller sizes, lower toxicity, simpler preparations and lower production costs. With a series of unique and superior physical and chemical properties, MNPs have great potential in medical applications. In particular, using MNPs as probes for medical imaging and carriers for targeted drug delivery systems. While MNPs are expected to be the future of cancer diagnosis and precision drug delivery, more research is still required to minimize their toxicity and improve their efficacy. An ideal MNP for clinical applications should be precisely engineered to be stable to act as tracers or deliver drugs to the targeted sites, release drug components only at the targeted sites and have minimal health risks. Our review aims to consolidate the recent improvements in MNPs for clinical applications as well as discuss the future research prospects and potential of MNPs in cancer theranostics.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Neoplasms , Drug Delivery Systems , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Precision Medicine , Theranostic Nanomedicine
15.
Biomedicines ; 9(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34944585

ABSTRACT

Cellular senescence is a complex and multistep biological process which cells can undergo in response to different stresses. Referring to a highly stable cell cycle arrest, cellular senescence can influence a multitude of biological processes-both physiologically and pathologically. While phenotypically diverse, characteristics of senescence include the expression of the senescence-associated secretory phenotype, cell cycle arrest factors, senescence-associated ß-galactosidase, morphogenesis, and chromatin remodelling. Persistent senescence is associated with pathologies such as aging, while transient senescence is associated with beneficial programmes, such as limb patterning. With these implications, senescence-based translational studies, namely senotherapy and pro-senescence therapy, are well underway to find the cure to complicated diseases such as cancer and atherosclerosis. Being a subject of major interest only in the recent decades, much remains to be studied, such as regarding the identification of unique biomarkers of senescent cells. This review attempts to provide a comprehensive understanding of the diverse literature on senescence, and discuss the knowledge we have on senescence thus far.

16.
Front Oncol ; 11: 599995, 2021.
Article in English | MEDLINE | ID: mdl-33833983

ABSTRACT

Cancer is one of the leading causes of mortality worldwide. PPAR modulators may hold great potential for the management of cancer patients. Indeed, PPARs are critical sensors and regulators of lipid, and they are able to promote eNOS activation, regulate immunity and inflammation response, and affect proliferation and differentiation of cancer cells. Cancer, a name given to a group of diseases, is characterized by multiple distinctive biological behaviors, including angiogenesis, abnormal cell proliferation, aerobic glycolysis, inflammation, etc. In the last decade, emerging evidence has shown that PPAR-α, a nuclear hormone receptor, can modulate carcinogenesis via exerting effects on one or several characteristic pathological behaviors of cancer. Therefore, the multi-functional PPAR modulators have substantial promise in various types of cancer therapies. This review aims to consolidate the functions of PPAR-α, as well as discuss the current and potential applications of PPAR-α agonists and antagonists in tackling cancer.

17.
Front Med (Lausanne) ; 8: 649383, 2021.
Article in English | MEDLINE | ID: mdl-33816529

ABSTRACT

Cancer has been regarded as one of the leading causes of mortality worldwide. Diagnostic and prognostic biomarkers with high sensitivity and specificity for cancer play a crucial role in preventing or treating cancer. Circular RNAs (circRNAs), which hold great potential for the management of cancer patients due to their abundance, stable property, and high specificity in serum, plasma, and other body fluids, can be used as non-invasive and blood-based biomarkers in cancer diagnosis and prognosis. There are four types of circRNAs including exonic circRNAs (ecircRNA), intronic circRNAs, exon-intron circRNAs (EIciRNA), and intergenic circRNAs. CircRNAs can act as miRNA sponges, affect protein translation, interplay with RNA binding proteins, regulate protein recruitment, and modulate protein scaffolding and assembly. Therefore, the multifunctionalities of circRNAs make them ideal for detecting and predicting cancer. Indeed, circRNAs manifest high sensitivity and specificity in more than ten types of cancer. This review aims to consolidate the types and functions of circRNAs, as well as discuss the diagnostic and prognostic value of circulating circRNAs in cancer.

18.
Front Oncol ; 11: 737776, 2021.
Article in English | MEDLINE | ID: mdl-34631571

ABSTRACT

Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.

19.
Front Endocrinol (Lausanne) ; 12: 630032, 2021.
Article in English | MEDLINE | ID: mdl-34603195

ABSTRACT

Diabetes, a metabolic disease characterized by high blood glucose and other complications, has undefined causes and multiple risk factors, including inappropriate diet, unhealthy lifestyles, and genetic predisposition. The two most distinguished types of diabetes are type 1 and type 2 diabetes, resulting from the autoimmune impairment of insulin-generating pancreatic ß cells and insulin insensitivity, respectively. Non-coding RNAs (ncRNAs), a cohort of RNAs with little transcriptional value, have been found to exert substantial importance in epigenetic and posttranscriptional modulation of gene expression such as messenger RNA (mRNA) silencing. This review mainly focuses on the pathology of type 2 diabetes (T2D) and ncRNAs as potential biomarkers in T2D development and clinical management. We consolidate the pathogenesis, diagnosis, and current treatments of T2D, and present the existing evidence on changes in multiple types of ncRNAs in response to various pathological changes and dysfunctions in different stages of T2D.


Subject(s)
Biomarkers/analysis , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/therapy , Gene Expression Regulation , RNA, Untranslated/genetics , Animals , Diabetes Mellitus, Type 2/genetics , Humans
20.
Psychol Res Behav Manag ; 14: 41-47, 2021.
Article in English | MEDLINE | ID: mdl-33500670

ABSTRACT

PURPOSE: To investigate the psychological impact of cases of coronavirus disease 19 (COVID-19) on medical staff of Beijing Xiaotangshan Hospital. METHODS: The 287 online questionnaires were distributed to medical staff working at Beijing Xiaotangshan Hospital, comprising three main sections and 17 questions: basic information, current departmental position, and the 12-item General Health Questionnaire (GHQ-12). The threshold for emotional distress was defined to be a total score of 4 on the GHQ-12 and above. RESULTS: A total of 255 members of medical staff participating in this study presented an emotional distress rate of 17%. Members who were male, aged 50-59, married with children, positioned as doctors, and in administration were the population with the highest rate of emotional distress. Furthermore, the severity of emotional distress among those under 30 was significantly lower than those aged 30-39 and 50-59. Doctors and other occupations shared a lower level of satisfaction on routine activities compared with nurses, so did staff in the administration compared with those who were working in screening or logistic departments. Besides, males and staff of the confirmation department had more difficulty in concentrating than females and those of the screening department, respectively. CONCLUSION: Medical staff working at Xiaotangshan Hospital underwent relatively low levels of emotional distress thanks to sufficient medical and psychological preparations. However, special attention should be paid to those who were male, married with children, senior, doctors, in administration, and in the confirmation department.

SELECTION OF CITATIONS
SEARCH DETAIL