Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98.734
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 38: 597-620, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340575

ABSTRACT

Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes-the pia mater, arachnoid mater, and dura mater-surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and-according to recent evidence-also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.


Subject(s)
Central Nervous System/immunology , Central Nervous System/metabolism , Disease Susceptibility , Homeostasis , Immunity , Meninges/physiology , Animals , Humans , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Neuroimmunomodulation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
Cell ; 185(12): 2132-2147.e26, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35688134

ABSTRACT

RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.


Subject(s)
Exosomes , DEAD-box RNA Helicases/metabolism , DNA Helicases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/metabolism , Humans , Nuclear Proteins/metabolism , Protein Binding , RNA/metabolism , RNA Stability
3.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051369

ABSTRACT

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Subject(s)
Gastrointestinal Microbiome/genetics , Genes, Bacterial , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems/genetics , Clostridium/genetics , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate , Drug Resistance, Microbial/genetics , Female , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Germ-Free Life , Inflammation/pathology , Intestines/pathology , Male , Metabolome/genetics , Metagenomics , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Insertional/genetics , Mutation/genetics , RNA, Ribosomal, 16S/genetics , Transcription, Genetic
4.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33508229

ABSTRACT

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Subject(s)
Cranial Sinuses/immunology , Cranial Sinuses/physiology , Dura Mater/immunology , Dura Mater/physiology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Antigens/cerebrospinal fluid , Cellular Senescence , Chemokine CXCL12/pharmacology , Dura Mater/blood supply , Female , Homeostasis , Humans , Immunity , Male , Mice, Inbred C57BL , Phenotype , Stromal Cells/cytology , T-Lymphocytes/cytology
5.
Cell ; 184(15): 3899-3914.e16, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34237254

ABSTRACT

The impact of the microbiome on HIV disease is widely acknowledged although the mechanisms downstream of fluctuations in microbial composition remain speculative. We detected rapid, dynamic changes in translocated microbial constituents during two years after cART initiation. An unbiased systems biology approach revealed two distinct pathways driven by changes in the abundance ratio of Serratia to other bacterial genera. Increased CD4 T cell numbers over the first year were associated with high Serratia abundance, pro-inflammatory innate cytokines, and metabolites that drive Th17 gene expression signatures and restoration of mucosal integrity. Subsequently, decreased Serratia abundance and downregulation of innate cytokines allowed re-establishment of systemic T cell homeostasis promoting restoration of Th1 and Th2 gene expression signatures. Analyses of three other geographically distinct cohorts of treated HIV infection established a more generalized principle that changes in diversity and composition of translocated microbial species influence systemic inflammation and consequently CD4 T cell recovery.


Subject(s)
Gastrointestinal Microbiome , HIV Infections/immunology , HIV Infections/microbiology , Antiretroviral Therapy, Highly Active , Biodiversity , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokines/blood , Cohort Studies , Glycolysis , HIV Infections/blood , HIV Infections/drug therapy , Humans , Inflammation/genetics , Inflammation/pathology , Mitochondria/metabolism , Monocytes/metabolism , Nucleic Acids/blood , Principal Component Analysis , Serratia/physiology , Th1 Cells/immunology , Th2 Cells/immunology , Transcription, Genetic , Uganda , Viral Load/immunology
6.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166614

ABSTRACT

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Subject(s)
Endogenous Retroviruses/physiology , Homeostasis , Inflammation/microbiology , Inflammation/pathology , Microbiota , Animals , Bacteria/metabolism , Chromosomes, Bacterial/genetics , Diet, High-Fat , Inflammation/immunology , Inflammation/virology , Interferon Type I/metabolism , Keratinocytes/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nucleotidyltransferases/metabolism , Retroelements/genetics , Signal Transduction , Skin/immunology , Skin/microbiology , T-Lymphocytes/immunology , Transcription, Genetic
7.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417860

ABSTRACT

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Diapause , Drug Resistance, Neoplasm , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Clone Cells , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genetic Heterogeneity/drug effects , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Mice, Inbred NOD , Mice, SCID , Models, Biological , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics , Xenograft Model Antitumor Assays
8.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32246942

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Subject(s)
Cell Communication/genetics , Disease/genetics , Oligodendroglia/metabolism , Animals , Brain/metabolism , Central Nervous System/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/physiopathology , Myelin Sheath/metabolism , Neurons/metabolism , Oligodendroglia/physiology , Risk Factors
9.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142680

ABSTRACT

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/drug effects , Drug Resistance, Neoplasm/immunology , Neoplasms/drug therapy , Prochlorperazine/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen Presentation/drug effects , Biopsy , Cetuximab/pharmacology , Drug Delivery Systems/methods , Drug Resistance, Neoplasm/genetics , Endocytosis/drug effects , Endocytosis/immunology , Heterografts , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , MCF-7 Cells , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Trastuzumab/pharmacology
10.
Cell ; 179(1): 282-282.e1, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31539497

ABSTRACT

The RNA exosome is a 3' to 5' ribonuclease that plays a fundamental role in maturation, quality control, and turnover of nearly all types of RNA produced in eukaryotic cells. Here, we present an overview of the structure, composition, and functions of the RNA exosome, including various cytoplasmic and nuclear exosome co-factors and associated protein complexes. To view this SnapShot, open or download the PDF.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Humans , RNA Helicases/metabolism , RNA Stability
11.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31813625

ABSTRACT

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phospholipases A2, Secretory/metabolism , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Animals , Astrocytes/drug effects , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Hexokinase/metabolism , Humans , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phospholipases A2, Secretory/genetics
12.
Cell ; 173(7): 1663-1677.e21, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29906447

ABSTRACT

The ribonucleolytic RNA exosome interacts with RNA helicases to degrade RNA. To understand how the 3' to 5' Mtr4 helicase engages RNA and the nuclear exosome, we reconstituted 14-subunit Mtr4-containing RNA exosomes from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human and show that they unwind structured substrates to promote degradation. We loaded a human exosome with an optimized DNA-RNA chimera that stalls MTR4 during unwinding and determined its structure to an overall resolution of 3.45 Å by cryoelectron microscopy (cryo-EM). The structure reveals an RNA-engaged helicase atop the non-catalytic core, with RNA captured within the central channel and DIS3 exoribonuclease active site. MPP6 tethers MTR4 to the exosome through contacts to the RecA domains of MTR4. EXOSC10 remains bound to the core, but its catalytic module and cofactor C1D are displaced by RNA-engaged MTR4. Competition for the exosome core may ensure that RNA is committed to degradation by DIS3 when engaged by MTR4.


Subject(s)
DNA Helicases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , RNA Helicases/metabolism , RNA/metabolism , Catalytic Domain , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/chemistry , Humans , Image Processing, Computer-Assisted , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Structure, Quaternary , RNA/genetics , RNA Helicases/chemistry , RNA Stability , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Substrate Specificity
13.
Nat Immunol ; 21(11): 1421-1429, 2020 11.
Article in English | MEDLINE | ID: mdl-32929273

ABSTRACT

Interleukin (IL)-17a has been highly conserved during evolution of the vertebrate immune system and widely studied in contexts of infection and autoimmunity. Studies suggest that IL-17a promotes behavioral changes in experimental models of autism and aggregation behavior in worms. Here, through a cellular and molecular characterization of meningeal γδ17 T cells, we defined the nearest central nervous system-associated source of IL-17a under homeostasis. Meningeal γδ T cells express high levels of the chemokine receptor CXCR6 and seed meninges shortly after birth. Physiological release of IL-17a by these cells was correlated with anxiety-like behavior in mice and was partially dependent on T cell receptor engagement and commensal-derived signals. IL-17a receptor was expressed in cortical glutamatergic neurons under steady state and its genetic deletion decreased anxiety-like behavior in mice. Our findings suggest that IL-17a production by meningeal γδ17 T cells represents an evolutionary bridge between this conserved anti-pathogen molecule and survival behavioral traits in vertebrates.


Subject(s)
Anxiety/etiology , Anxiety/metabolism , Interleukin-17/metabolism , Neurons/immunology , Neurons/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Anxiety/psychology , Behavior, Animal , Cell Proliferation , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Dura Mater , Gene Expression Profiling , Gene Expression Regulation , Interleukin-17/genetics , Meninges/immunology , Meninges/metabolism , Mice , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction , Transcriptome
14.
Immunity ; 56(3): 592-605.e8, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36804959

ABSTRACT

Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.


Subject(s)
Erythropoiesis , Malaria, Cerebral , Animals , Mice , Erythrocytes , Interleukin-17 , Liver/parasitology , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta , Malaria
15.
Mol Cell ; 84(3): 584-595.e6, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38244546

ABSTRACT

The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.


Subject(s)
Adenosine/analogs & derivatives , Peptide Chain Initiation, Translational , Protein Biosynthesis , 5' Untranslated Regions , Cryoelectron Microscopy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Codon, Initiator/genetics
16.
Cell ; 166(3): 703-715, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27453468

ABSTRACT

The performance of an action relies on the initiation and execution of appropriate movement sequences. Two basal ganglia pathways have been classically hypothesized to regulate this process via opposing roles in movement facilitation and suppression. By using a series of state-dependent optogenetic manipulations, we dissected the contributions of each pathway and found that both the direct striatonigral pathway and the indirect striatopallidal pathway are necessary for smooth initiation and the execution of learned action sequences. Optogenetic inhibition or stimulation of each pathway before sequence initiation increased the latency for initiation: manipulations of the striatonigral pathway activity slowed action initiation, and those of the striatopallidal pathway aborted action initiation. The inhibition of each pathway after initiation also impaired ongoing execution. Furthermore, the subtle activation of striatonigral neurons sustained the performance of learned sequences, while striatopallidal manipulations aborted ongoing performance. These results suggest a supportive versus permissive model, where patterns of coordinated activity, rather than the relative amount of activity in these pathways, regulate movement initiation and execution.


Subject(s)
Corpus Striatum/physiology , Neural Pathways/physiology , Psychomotor Performance/physiology , Animals , Basal Ganglia/physiology , Corpus Striatum/cytology , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Movement , Neurons/physiology , Optogenetics
17.
Cell ; 160(4): 759-770, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25679765

ABSTRACT

Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.


Subject(s)
Autocrine Communication , Neurons/metabolism , Pain/metabolism , Receptors, GABA-B/metabolism , TRPV Cation Channels/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Cells, Cultured , Feedback , Female , Male , Mice, Inbred C57BL , Mice, Transgenic
18.
Nature ; 633(8028): 216-223, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39143218

ABSTRACT

Transthiolation (also known as transthioesterification) reactions are used in the biosynthesis of acetyl coenzyme A, fatty acids and polyketides, and for post-translational modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins1-3. For the Ub pathway, E1 enzymes catalyse transthiolation from an E1~Ub thioester to an E2~Ub thioester. Transthiolation is also required for transfer of Ub from an E2~Ub thioester to HECT (homologous to E6AP C terminus) and RBR (ring-between-ring) E3 ligases to form E3~Ub thioesters4-6. How isoenergetic transfer of thioester bonds is driven forward by enzymes in the Ub pathway remains unclear. Here we isolate mimics of transient transthiolation intermediates for E1-Ub(T)-E2 and E2-Ub(T)-E3HECT complexes (where T denotes Ub in a thioester or Ub undergoing transthiolation) using a chemical strategy with native enzymes and near-native Ub to capture and visualize a continuum of structures determined by single-particle cryo-electron microscopy. These structures and accompanying biochemical experiments illuminate conformational changes in Ub, E1, E2 and E3 that are coordinated with the chemical reactions to facilitate directional transfer of Ub from each enzyme to the next.


Subject(s)
Protein Processing, Post-Translational , Schizosaccharomyces pombe Proteins , Sulfhydryl Compounds , Ubiquitin-Activating Enzymes , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitin , Cryoelectron Microscopy , Esterification , Models, Molecular , Protein Conformation , Schizosaccharomyces/enzymology , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/ultrastructure , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin/ultrastructure , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/ultrastructure , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure
19.
Nature ; 625(7995): 540-547, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030719

ABSTRACT

The expansion of people speaking Bantu languages is the most dramatic demographic event in Late Holocene Africa and fundamentally reshaped the linguistic, cultural and biological landscape of the continent1-7. With a comprehensive genomic dataset, including newly generated data of modern-day and ancient DNA from previously unsampled regions in Africa, we contribute insights into this expansion that started 6,000-4,000 years ago in western Africa. We genotyped 1,763 participants, including 1,526 Bantu speakers from 147 populations across 14 African countries, and generated whole-genome sequences from 12 Late Iron Age individuals8. We show that genetic diversity amongst Bantu-speaking populations declines with distance from western Africa, with current-day Zambia and the Democratic Republic of Congo as possible crossroads of interaction. Using spatially explicit methods9 and correlating genetic, linguistic and geographical data, we provide cross-disciplinary support for a serial-founder migration model. We further show that Bantu speakers received significant gene flow from local groups in regions they expanded into. Our genetic dataset provides an exhaustive modern-day African comparative dataset for ancient DNA studies10 and will be important to a wide range of disciplines from science and humanities, as well as to the medical sector studying human genetic variation and health in African and African-descendant populations.


Subject(s)
DNA, Ancient , Emigration and Immigration , Genetics, Population , Language , Humans , Africa, Western , Datasets as Topic , Democratic Republic of the Congo , DNA, Ancient/analysis , Emigration and Immigration/history , Founder Effect , Gene Flow/genetics , Genetic Variation/genetics , History, Ancient , Language/history , Linguistics/history , Zambia , Geographic Mapping
20.
Genes Dev ; 36(3-4): 180-194, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35058317

ABSTRACT

Mechanisms regulating meiotic progression in mammals are poorly understood. The N6-methyladenosine (m6A) reader and 3' → 5' RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs and is essential for meiotic entry, but how this critical cell fate change is accomplished is unknown. Here, we provide insight into its mechanism and implicate YTHDC2 in having a broad role in gene regulation during multiple meiotic stages. Unexpectedly, mutation of the m6A-binding pocket of YTHDC2 had no detectable effect on gametogenesis and mouse fertility, suggesting that YTHDC2 function is m6A-independent. Supporting this conclusion, CLIP data defined YTHDC2-binding sites on mRNA as U-rich and UG-rich motif-containing regions within 3' UTRs and coding sequences, distinct from the sites that contain m6A during spermatogenesis. Complete loss of YTHDC2 during meiotic entry did not substantially alter translation of its mRNA binding targets in whole-testis ribosome profiling assays but did modestly affect their steady-state levels. Mutation of the ATPase motif in the helicase domain of YTHDC2 did not affect meiotic entry, but it blocked meiotic prophase I progression, causing sterility. Our findings inform a model in which YTHDC2 binds transcripts independent of m6A status and regulates gene expression during multiple stages of meiosis by distinct mechanisms.


Subject(s)
Meiosis , RNA Helicases , Animals , Gene Expression Regulation , Male , Mammals/genetics , Meiosis/genetics , Mice , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL