Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Curr Hypertens Rev ; 19(1): 34-41, 2023.
Article in English | MEDLINE | ID: mdl-35692167

ABSTRACT

The efficiency of blood flowing from the heart depends on its electrical properties. Myocardial electrical activity is associated with generating cardiac action potentials in isolated myocardial cells and their coordinated propagation, which are mediated by gap junctions. Atrial fibrillation (AF) is a common cardiac arrhythmia which causes an aggressive disturbance in cardiac electromechanical function. Moreover, AF increases the risk of stroke and mortality and is a major cause of death. The mechanisms underlying AF involve electrophysiological changes in ion channel expression and function. ß-blockers may be useful in patients with chronic AF or in preventing postoperative AF in subjects undergoing coronary artery bypass grafting (CABG) or other types of surgery. The reduction in heart rate induced by ß1-adrenergic receptor antagonists may be associated with the beneficial effect of this drug class. Second generation beta-blockers may be considered superior to the first generation due to their selectivity to the ß1 receptor as well as avoiding pulmonary or metabolic adverse effects. Third generation beta-blockers may be considered a great option for their vasodilation and antioxidant properties. There is also a new ß-blocker, named landilol that also results on reduced risk of post operative AF without adverse effects and its use has been increasing in clinical trials.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/drug therapy , Adrenergic beta-Antagonists/adverse effects , Heart Rate , Coronary Artery Bypass/adverse effects , Myocardium
SELECTION OF CITATIONS
SEARCH DETAIL