Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Small ; : e2405692, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221636

ABSTRACT

Pressure-modulated self-trapped exciton (STE) emission mechanism in all-inorganic lead-free metal halide double perovskites characterized by large Stokes-shifted broadband emission, has attracted much attention across various fields such as optics, optoelectronics, and biomedical sciences. Here, by employing the all-inorganic lead-free metal halide double perovskite Cs2TeCl6 as a paradigm, the authors elucidate that the performance of STE emission can be modulated by pressure, attributable to the pressure-induced evolution of the electronic state (ES). Two ES transitions happen at pressures of 1.6 and 5.8 GPa, sequentially. The electronic behaviors of Cs2TeCl6 can be jointly modulated by both pressure and ES transitions. When the pressure reaches 1.6 GPa, the Huang-Rhys factor S, indicative of the strength of electron-phonon coupling, attains an optimum value of ≈12.0, correlating with the pressure-induced photoluminescence (PL) intensity of Cs2TeCl6 is 4.8-fold that of its PL intensity under ambient pressure. Through analyzing the pressure-dependent STE dynamic behavioral changes, the authors have revealed the microphysical mechanism underlying the pressure-modulated enhancement and quenching of STE emission in Cs2TeCl6.

2.
Small ; 20(35): e2400216, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38676348

ABSTRACT

Transition metal dichalcogenides (TMDs) exhibit excellent electronic and photoelectric properties under pressure, prompting researchers to investigate their structural phase transitions, electrical transport, and photoelectric response upon compression. Herein, the structural and photoelectric properties of layered ZrS2 under pressure using in situ high-pressure photocurrent, Raman scattering spectroscopy, alternating current impedance spectroscopy, absorption spectroscopy, and theoretical calculations are studied. The experimental results show that the photocurrent of ZrS2 continuously increases with increasing pressure. At 24.6 GPa, the photocurrent of high-pressure phase P21/m is three orders of magnitude greater than that of the initial phase P 3 ¯ m 1 $P\bar{3}m1$ at ambient pressure. The minimum synthesis pressure for pure high-pressure phase P21/m of ZrS2 is 18.8 GPa, which exhibits a photocurrent that is two orders of magnitude higher than that of the initial phase P 3 ¯ m 1 $P\bar{3}m1$ and displays excellent stability. Additionally, it is discovered that the crystal structure, electrical transport properties and bandgap of layered ZrS2 can also be regulated by pressure. This work offers researchers a new direction for synthesizing high-performance TMDs photoelectric materials using high pressure, which is crucial for enhancing the performance of photoelectric devices in the future.

3.
Inorg Chem ; 63(24): 11431-11437, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38814822

ABSTRACT

Lead-free organic-inorganic hybrid perovskites are one class of promising optoelectronic materials that have attracted much attention due to their outstanding stability and environmentally friendly nature. However, the intrinsic band gap far from the Shockley-Queisser limit and the inferior electrical properties largely limit their applicability. Here, a considerable band-gap narrowing from 2.43 to 1.64 eV with the compression rate up to 32.5% is achieved via high-pressure engineering in the lead-free hybrid perovskite MA3Sb2I9. Meanwhile, the electric transport process changes from the initial interaction of both ions and electrons to only the contribution of electrons upon compression. The alteration in electrical characteristics is ascribed to the vibration limitation of organic ions and the enhanced orbital overlap, resulting from the reduction of the Sb-I bond length through pressure-induced phase transitions. This work not only systematically investigates the correlation between the structural and optoelectronic properties of MA3Sb2I9 but also provides a potential pathway for optimizing electrical properties in lead-free hybrid perovskites.

4.
BMC Musculoskelet Disord ; 25(1): 375, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734632

ABSTRACT

BACKGROUND: Synovitis, characterized by inflammation of the synovial membrane, is commonly induced by meniscus tears. However, significant differences in inflammatory responses and the key inflammatory mediators of synovium induced by different types of meniscal tears remain unclear. METHODS: Magnetic resonance imaging (MRI) was employed to identify the type of meniscus tear, and the quantification of synovial inflammation was assessed through H&E staining assay. Transcription and expression levels of IL-1ß and IL-6 were evaluated using bioinformatics, ELISA, RT-qPCR, and IHC of CD68 staining assays. The therapeutic potential of Docosapentaenoic Acid (DPA) was determined through network pharmacology, ELISA, and RT-qPCR assays. The safety of DPA was assessed using colony formation and EdU staining assays. RESULTS: The results indicate that both IL-1ß and IL-6 play pivotal roles in synovitis pathogenesis, with distinct expression levels across various subtypes. Among tested meniscus tears, oblique tear and bucket handle tear induced the most severe inflammation, followed by radial tear and longitudinal tear, while horizontal tear resulted in the least inflammation. Furthermore, in synovial inflammation induced by specific meniscus tears, the anterior medial tissues exhibited significantly higher local inflammation than the anterior lateral and suprapatellar regions, highlighting the clinical relevance and practical guidance of anterior medial tissues' inflammatory levels. Additionally, we identified the essential omega-3 fatty acid DPA as a potential therapeutic agent for synovitis, demonstrating efficacy in blocking the transcription and expression of IL-1ß and IL-6 with minimal side effects. CONCLUSION: These findings provide valuable insights into the nuanced nature of synovial inflammation induced by various meniscal tear classifications and contribute to the development of new adjunctive therapeutic agents in the management of synovitis.


Subject(s)
Fatty Acids, Unsaturated , Interleukin-1beta , Magnetic Resonance Imaging , Synovial Membrane , Synovitis , Tibial Meniscus Injuries , Tibial Meniscus Injuries/drug therapy , Tibial Meniscus Injuries/metabolism , Synovitis/drug therapy , Synovitis/metabolism , Synovitis/pathology , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Synovial Membrane/pathology , Humans , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/therapeutic use , Male , Interleukin-1beta/metabolism , Animals , Interleukin-6/metabolism , Female , Menisci, Tibial/drug effects , Menisci, Tibial/metabolism , Mice , Disease Models, Animal
5.
Angew Chem Int Ed Engl ; : e202412756, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107973

ABSTRACT

Simultaneous enhancement of free excitons (FEs) emission and self-trapped excitons (STEs) emission remains greatly challenging because of the radiative pathway competition. Here, a significant fluorescence improvement, associated with the radiative recombination of both FEs and STEs is firstly achieved in an unconventional ACI-type hybrid perovskite, (ACA)(MA)PbI4 (ACA=acetamidinium) crystals with {PbI6} octahedron units, through hydrostatic pressure processing. Note that (ACA)(MA)PbI4 exhibits a 91.5-fold emission enhancement and considerable piezochromism from green to red in a mild pressure interval of 1 atm to 2.5 GPa. The substantial distortion of both individual halide octahedron and the Pb-I-Pb angles between two halide octahedra under high pressure indeed determines the pressure-tuning localized excitons behavior. Upon higher pressure, photocurrent enhancement is also observed, which is attributed to the promoted electronic connectivity in (ACA)(MA)PbI4. The anisotropic compaction reduces the distance between neighboring organic molecules and {PbI6} octahedra, leading to the enhancement of hydrogen bonding interactions. This work not only offers a deep understanding of the structure-optical relationships of ACI-type perovskites, but also presents insights into breaking the limits of luminescent efficiency by pressure-suppressed nonradiative recombination.

6.
Opt Express ; 31(8): 13017-13027, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157448

ABSTRACT

The stimulus-responsive smart switching of aggregation-induced emission (AIE) features has attracted considerable attention in 4D information encryption, optical sensors and biological imaging. Nevertheless, for some AIE-inactive triphenylamine (TPA) derivatives, activating the fluorescence channel of TPA remains a challenge based on their intrinsic molecular configuration. Here, we took a new design strategy for opening a new fluorescence channel and enhancing AIE efficiency for (E)-1-(((4-(diphenylamino)phenyl)imino)methyl)naphthalen-2-ol. The turn-on methodology employed is based on pressure induction. Combining ultrafast and Raman spectra with high-pressure in situ showed that activating the new fluorescence channel stemmed from restraining intramolecular twist rotation. Twisted intramolecular charge transfer (TICT) and intramolecular vibration were restricted, which induced an increase in AIE efficiency. This approach provides a new strategy for the development of stimulus-responsive smart-switch materials.

7.
Phys Chem Chem Phys ; 25(10): 7366-7372, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36825775

ABSTRACT

The magnetic properties and electrical transport behaviors of half-metallic ferromagnet chromium dioxide (CrO2) powders under high pressure have been investigated by in situ electrical resistivity, magneto-resistivity, and Hall-effect measurements. Our results reveal that the Hall coefficient, carrier concentration, and mobility all present discontinuous changes from 11.7 GPa to 14.9 GPa which can be attributed to the second-order structural transition from the rutile-type to CaCl2-type. However, the resistivity decreases monotonically from ambient pressure to 16.5 GPa. This is due to, first, the decreased carrier concentration and the increased carrier mobility canceling the effects of each other on the resistivity; second, according to the calculation results, the bandgap of CrO2 decreased gradually with the pressure, and the bandgaps of the rutile-type phase and the CaCl2-type phase are extremely similar. CrO2 exhibits a linear and negative magnetoresistance under the applied magnetic field (0∼ ± 15 kOe). As the pressure increases, the magnetoresistance remains negative, but it becomes nonlinear and less symmetric, suggesting that pressure has an appreciable impact on the double-exchange mechanism leading to ferromagnetism in CrO2.

8.
Phys Chem Chem Phys ; 24(39): 24264-24270, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36172737

ABSTRACT

The oxidation of methane to a high-value-added chemical, methanol, is a major challenge in catalysis, requiring high energy input to overcome the CH3-H bond activation energy barrier. Based on density functional theory (DFT) calculations, methane oxidation to methanol is catalyzed by hetero-diatomic catalysts (CuZn-NG) with different coordination spheres (CSs). Valence band maximum (VBM), atomic charge and d-band center are selected as analysis methods for the pathway selection and activity of catalysis. The VBM plays a vital role in the catalytic pathway selection, CuZn-NG catalyzes the direct conversion of methane into methanol without side reactions. Alarmingly, the most important reaction step, CH3-H bond activation, is a spontaneously exothermic reaction (releasing 0.06 eV) with CuZn-NPAG as the catalyst, in contrast to most other endothermic reactions in the same activation. By analyzing the atomic charge of the Cu center and O atom, the special electronic phenomenon for this important step is summarized as the "bow-release effect". The CS affects the electronic properties of the active center and further affects the methane oxidation activity. This work provides a useful guide to understand the catalytic selectivity and activity of hetero-diatomic catalysts.

9.
Opt Express ; 29(17): 27171-27180, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615138

ABSTRACT

Förster resonance energy transfer (FRET) and Auger recombination in quantum dots (QDs)-molecules system are important mechanisms for affecting performance of their optoelectronic and photosynthesis devices. However, exploring an effective strategy to promote FRET and suppress Auger recombination simultaneously remains a daunting challenge. Here, we report that FRET process is promoted and Auger recombination process is suppressed in CdTe/CdS QDs-Rhodamine101 (Rh101) molecules system upon compression. The greatly improved FRET is attributed to the shortened donor-acceptor distance and increased the number of molecules attached to QDs induced by pressure. The reduced Auger recombination is ascribed to the formation of an alloy layer at the core/shell interface. The FRET can occur 70 times faster than Auger recombination under a high pressure of 0.9 GPa. Our findings demonstrate that high pressure is a robust tool to boost FRET and simultaneously suppress Auger recombination, and provides a new route to QDs-molecules applications.

10.
Opt Lett ; 46(8): 1892-1895, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33857097

ABSTRACT

Pulses as short as 17.8 fs with a spectral bandwidth of 145 nm and central wavelength of 1118 nm have been generated from a Kerr-lens mode-locked Yb:CALGO oscillator. The oscillator operating at an average power of 26 mW and a repetition rate of 95.9 MHz is pumped by a cost-effective single-mode fiber coupled laser diode emitting 800 mW at 976 nm. The dispersion is compensated using a prism pair combined with broadband chirp mirrors. To the best of our knowledge, the pulse durations corresponding to approximately 4.8 optical cycle pulses are the shortest achieved durations through a Yb-doped bulk oscillator.

11.
Nanotechnology ; 32(33)2021 May 24.
Article in English | MEDLINE | ID: mdl-33951616

ABSTRACT

Nanostructured n-type metal oxides/p-type boron-doped diamond heterojunctions have demonstrated a typical rectification feature and/or negative differential resistance (NDR) potentially applied in wide fields. Recently, the fabrication and electronic transport behavior of n-WO3nanorods/p-diamond heterojunction at high temperatures were studied by Wanget al(2017Appl. Phys. Lett.110052106), which opened the door for optoelectronic applications that can operate at high-temperatures, high-power, and in various harsh environments. In this perspective, an overview was presented on the future directions, challenges and opportunities for the optoelectronic applications based on the n-WO3nanostructures/p-diamond heterojunction. We focus, in particular, on the prospects for its high temperature NDR, UV photodetector, field emission emitters, photocatalyst and optical information storage for a wide range of new optoelectronic applications.

12.
Phys Chem Chem Phys ; 23(46): 26343-26348, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34788775

ABSTRACT

Valence Compton profiles (CPs) (electron momentum density projections) of B-doped carbon nano-onions (CNOs) as a function of the boron doping content were obtained by recording electron energy-loss spectra at large scattering angles using a transmission electron microscope, a technique known as electron Compton scattering from solids (ECOSS). The amplitude of the CPs at zero momentum increases with increasing doping content, while the shape of the CPs becomes narrower with increasing doping content. The differences between the profiles of B-doped CNOs and that of pristine CNOs have been clearly observed. These experimental results indicate substantially greater delocalization of the ground-state charge density in B-doped CNOs than in pristine CNOs. The results clearly demonstrate that the ECOSS technique is an efficient and reliable experimental method for studying electron density distributions in solids as a function of the heteroatom doping content.

13.
J Clin Lab Anal ; 35(4): e23709, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33547838

ABSTRACT

BACKGROUND: This study aimed to investigate the relationship of serum JNK pathway-associated phosphatase (JKAP) expression with rheumatoid arthritis (RA) risk and clinical features, also to explore the longitudinal change of JKAP during etanercept treatment and its relationship with etanercept treatment response in RA patients. METHODS: A total of 87 RA patients and 44 healthy controls (HCs) were enrolled; then, their JKAP expression in serum was determined by enzyme-linked immunosorbent assay (ELISA). Among 87 RA patients, 42 cases further received the 24-week etanercept treatment; then, their JKAP level in serum (detected by ELISA) and clinical response (evaluated by disease activity score in 28 joints (DAS28) score) were evaluated at week 4 (W4), week 12 (W12), and week 24 (W24) after initiation of etanercept treatment. RESULTS: JKAP expression was decreased in RA patients compared to HCs, which disclosed a good predictive value for RA risk. JKAP expression was negatively associated with tender joint count, swollen joint count, erythrocyte sedimentation rate, C-reactive protein, and DAS28 in RA patients, respectively. For RA patients who received 24-week etanercept treatment, their clinical response rate was 0.0%, 33.3%, 50.0%, and 69% at W0, W4, W12, and W24, respectively. Importantly, JKAP was gradually increased during etanercept treatment, whose longitudinal elevation positively related to etanercept treatment response in RA patients. CONCLUSION: Circulating JKAP links with decreased RA risk and mild disease activity, whose longitudinal elevation positively relates to etanercept treatment response.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/enzymology , Dual-Specificity Phosphatases/metabolism , Etanercept/therapeutic use , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Arthritis, Rheumatoid/pathology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Risk Factors , Treatment Outcome
14.
Molecules ; 26(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375703

ABSTRACT

This review is mainly focused on the optoelectronic properties of diamond-based one-dimensional-metal-oxide heterojunction. First, we briefly introduce the research progress on one-dimensional (1D)-metal-oxide heterojunctions and the features of the p-type boron-doped diamond (BDD) film; then, we discuss the use of three oxide types (ZnO, TiO2 and WO3) in diamond-based-1D-metal-oxide heterojunctions, including fabrication, epitaxial growth, photocatalytic properties, electrical transport behavior and negative differential resistance behavior, especially at higher temperatures. Finally, we discuss the challenges and future trends in this research area. The discussed results of about 10 years' research on high-performance diamond-based heterojunctions will contribute to the further development of photoelectric nano-devices for high-temperature and high-power applications.


Subject(s)
Boron/chemistry , Diamond/chemistry , Metals/chemistry , Oxides/chemistry , Microscopy, Electron, Scanning , Organic Chemicals/chemistry
15.
Inflammopharmacology ; 28(2): 437-450, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31781981

ABSTRACT

BACKGROUND: This study aimed to analyze long non-coding RNA (lncRNA) expression profiles in synovium tissue of patients with RA using RNA sequencing, and to further assess the clinical values of dysregulated lncRNAs in RA diagnosis and monitoring. METHODS: Thirty patients with RA who underwent knee arthroscopy and 30 controls with knee trauma who underwent surgery were consecutively enrolled and synovium tissue samples of both groups were obtained during surgery. In the exploration stage, lncRNA and mRNA expression profiles in three RA samples and three control samples were detected by RNA sequencing and bioinformatic analyses were then performed. In the validation stage, quantitative polymerase chain reaction (qPCR) was subsequently used to detect expression of five candidate lncRNAs in 30 patients with RA and 30 control patients. RESULTS: A total of 349 lncRNAs and 1582 mRNAs were upregulated and 806 lncRNAs and 1295 mRNAs were downregulated in patients with RA compared with controls. Enrichment analyses revealed that these dysregulated lncRNAs and mRNAs were mainly involved in regulating immune response, leukocyte migration, complement activation, and B cell receptor signaling pathway. Subsequent qPCR validation discovered that lnc-AL928768.3 (P < 0.001) and lnc-AC091493.1 (P < 0.001) were elevated in patients with RA compared with controls and afford good predictive values for RA risk by receiver operating characteristic (ROC) curve analysis. Additionally, the two lncRNAs were positively associated with C-reactive protein level and disease activity score in 28 joints (ESR) (all P < 0.05). CONCLUSION: Analysis of lncRNA expression profiles by sequencing reveals that lnc-AL928768.3 and lnc-AC091493.1 are novel biomarkers for RA risk and activity.


Subject(s)
Arthritis, Rheumatoid/physiopathology , RNA, Long Noncoding/genetics , Adult , Aged , Arthritis, Rheumatoid/genetics , Arthroscopy , Biomarkers/metabolism , C-Reactive Protein/metabolism , Case-Control Studies , Female , Humans , Male , Middle Aged , Sequence Analysis, RNA , Severity of Illness Index
16.
Opt Express ; 27(16): A995-A1003, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510488

ABSTRACT

The excited-state carrier dynamics of lead halide perovskites play a critical role in their photoelectric properties, and are greatly affected by lattice structural changes. In this work, the carrier dynamics of all-inorganic CsPbBr3 peroveskite, as a function of pressure, are investigated using in situ high-pressure femtosecond transient absorption spectroscopic experiments. Compression is found to drive crystal structural evolution, thereby markedly changing the behavior of charge carriers in CsPbBr3. Before the phase transition, simultaneous prolonging of the carrier relaxation and Auger recombination is achieved alongside a narrowing in the bandgap. The results favor improved efficiency and photovoltaic performance.

17.
Phys Chem Chem Phys ; 20(11): 7492-7497, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29508875

ABSTRACT

The electrical transport behavior of the superionic conductor AgBr was systematically studied under high pressure up to 30.0 GPa with electrochemical impedance spectra measurements and first-principles calculations. From impedance spectra measurements, a pressure-induced abnormal ionic-polaronic-ionic transition was found. Herein, the ionic to polaronic transition at 5.0 GPa occurs with the absence of a structural phase transition. At 8.6 GPa, the ionic state of AgBr can be reactivated after a structural phase transition. Previous structural studies based on X-ray diffraction data cannot provide strong evidence to support the ionic-polaronic transition in AgBr at 5.0 GPa. In this paper, based on first-principles calculations, a localized-electron-soup model was proposed to explain the physical origin of the ionic-polaronic transition. In this model, more localized electrons around the Br atoms are pressed into interstitial spaces and, simultaneously, polarons are formed between Ag+ ions and the localized electron background at 5.0 GPa. Therefore, the diffusion of Ag+ ions is effectively screened by the movement of the localized electron background from its equilibrium position, much like beans completely trapped in a cup of thick soup.

18.
Phys Chem Chem Phys ; 20(13): 8917-8923, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29557428

ABSTRACT

Hydride ions (H-) have an appropriate size for fast transport, which makes the conduction of H- attractive. In this work, the H- transport properties of BaH2 have been investigated under pressure using in situ impedance spectroscopy measurements up to 11.2 GPa and density functional theoretical calculations. The H- transport properties, including ionic migration resistance, relaxation frequency, and relative permittivity, change significantly with pressure around 2.3 GPa, which can be attributed to the structural phase transition of BaH2. The ionic migration barrier energy of the P63/mmc phase decreases with pressure, which is responsible for the increased ionic conductivity. A huge dielectric constant at low frequencies is observed, which is related to the polarization of the H- dipoles. The current study establishes general guidelines for developing high-energy storage and conversion devices based on hydride ion transportation.

19.
Angew Chem Int Ed Engl ; 57(35): 11213-11217, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30010235

ABSTRACT

Low-toxicity, air-stable bismuth-based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero-dimensional perovskite Cs3 Bi2 I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi-I bond contraction, and the decrease in bridging Bi-I-Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley-Queisser limit under relatively low pressure. Pressure-induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor-to-conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.

20.
Phys Chem Chem Phys ; 18(48): 33109-33114, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27886297

ABSTRACT

In situ impedance measurements were employed to investigate the electrical transport properties of BaMoO4 under pressures of up to 20.0 GPa. Two anomalous changes in the electrical parameters were found, related to the pressure-induced structural phase transitions. The dielectric performance of BaMoO4 was improved by pressure. The dispersion in the real part of dielectric constant versus frequency weakens with increasing pressure. Based on the first-principles calculations, the increases of resistance with increasing pressure in the tetragonal and monoclinic phases were mainly caused by the increasing defect levels. The decrease of the relative permittivity in the tetragonal phase was attributed to pressure-induced strengthening in electronic localization around Mo atoms, which hindered the polarization of Mo-O electric dipoles.

SELECTION OF CITATIONS
SEARCH DETAIL