Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 158(3): 620-32, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25083872

ABSTRACT

Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in neurons controls glutamate signaling in dendritic spines. The molecular identity of these barriers is currently unknown. Here, we show that a direct interaction between the ER protein Scs2 and the septin Shs1 creates the ER diffusion barrier in yeast. Barrier formation requires Epo1, a novel ER-associated subunit of the polarisome that interacts with Scs2 and Shs1. ER-septin tethering polarizes the ER into separate mother and bud domains, one function of which is to position the spindle in the mother until M phase by confining the spindle capture protein Num1 to the mother ER.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Carrier Proteins/genetics , Cell Polarity , Cytoskeletal Proteins/metabolism , Diffusion , Endoplasmic Reticulum/chemistry , Membrane Proteins/genetics , Nuclear Envelope/metabolism , S Phase , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
2.
Microb Cell Fact ; 23(1): 36, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287338

ABSTRACT

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.


Subject(s)
Laccase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Laccase/genetics , Laccase/metabolism , Trametes/genetics , Trametes/metabolism , Recombinant Proteins , Protein Processing, Post-Translational
3.
PLoS Genet ; 17(9): e1009774, 2021 09.
Article in English | MEDLINE | ID: mdl-34492006

ABSTRACT

Gene variant discovery is becoming routine, but it remains difficult to usefully interpret the functional consequence or disease relevance of most variants. To fill this interpretation gap, experimental assays of variant function are becoming common place. Yet, it remains challenging to make these assays reproducible, scalable to high numbers of variants, and capable of assessing defined gene-disease mechanism for clinical interpretation aligned to the ClinGen Sequence Variant Interpretation (SVI) Working Group guidelines for 'well-established assays'. Drosophila melanogaster offers great potential as an assay platform, but was untested for high numbers of human variants adherent to these guidelines. Here, we wished to test the utility of Drosophila as a platform for scalable well-established assays. We took a genetic interaction approach to test the function of ~100 human PTEN variants in cancer-relevant suppression of PI3K/AKT signaling in cellular growth and proliferation. We validated the assay using biochemically characterized PTEN mutants as well as 23 total known pathogenic and benign PTEN variants, all of which the assay correctly assigned into predicted functional categories. Additionally, function calls for these variants correlated very well with our recent published data from a human cell line. Finally, using these pathogenic and benign variants to calibrate the assay, we could set readout thresholds for clinical interpretation of the pathogenicity of 70 other PTEN variants. Overall, we demonstrate that Drosophila offers a powerful assay platform for clinical variant interpretation, that can be used in conjunction with other well-established assays, to increase confidence in the accurate assessment of variant function and pathogenicity.


Subject(s)
Cell Proliferation , Drosophila melanogaster/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Humans , Signal Transduction
4.
BMC Bioinformatics ; 22(1): 202, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879063

ABSTRACT

BACKGROUND: Genetic testing is widely used in evaluating a patient's predisposition to hereditary diseases. In the case of cancer, when a functionally impactful mutation (i.e. genetic variant) is identified in a disease-relevant gene, the patient is at elevated risk of developing a lesion in their lifetime. Unfortunately, as the rate and coverage of genetic testing has accelerated, our ability to assess the functional status of new variants has fallen behind. Therefore, there is an urgent need for more practical, streamlined and cost-effective methods for classifying variants. RESULTS: To directly address this issue, we designed a new approach that uses alterations in protein subcellular localization as a key indicator of loss of function. Thus, new variants can be rapidly functionalized using high-content microscopy (HCM). To facilitate the analysis of the large amounts of imaging data, we developed a new software toolkit, named MAPS for machine-assisted phenotype scoring, that utilizes deep learning to extract and classify cell-level features. MAPS helps users leverage cloud-based deep learning services that are easy to train and deploy to fit their specific experimental conditions. Model training is code-free and can be done with limited training images. Thus, MAPS allows cell biologists to easily incorporate deep learning into their image analysis pipeline. We demonstrated an effective variant functionalization workflow that integrates HCM and MAPS to assess missense variants of PTEN, a tumor suppressor that is frequently mutated in hereditary and somatic cancers. CONCLUSIONS: This paper presents a new way to rapidly assess variant function using cloud deep learning. Since most tumor suppressors have well-defined subcellular localizations, our approach could be widely applied to functionalize variants of uncertain significance and help improve the utility of genetic testing.


Subject(s)
Microscopy , Software , Humans , Image Processing, Computer-Assisted , Phenotype , Workflow
5.
PLoS Genet ; 12(7): e1006184, 2016 07.
Article in English | MEDLINE | ID: mdl-27448207

ABSTRACT

Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.


Subject(s)
Guanylate Kinases/genetics , Molecular Chaperones/genetics , Protein Aggregates/genetics , Proteolysis , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Mutation, Missense , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Folding , Saccharomyces cerevisiae/genetics , Solubility , Ubiquitination
6.
PLoS Genet ; 11(3): e1005109, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25822502

ABSTRACT

Separase/Esp1 is a protease required at the onset of anaphase to cleave cohesin and thereby enable sister chromatid separation. Esp1 also promotes release of the Cdc14 phosphatase from the nucleolus to enable mitotic exit. To uncover other potential roles for separase, we performed two complementary genome-wide genetic interaction screens with a strain carrying the budding yeast esp1-1 separase mutation. We identified 161 genes that when mutated aggravate esp1-1 growth and 44 genes that upon increased dosage are detrimental to esp1-1 viability. In addition to the expected cell cycle and sister chromatid segregation genes that were identified, 24% of the genes identified in the esp1-1 genetic screens have a role in Ty1 element retrotransposition. Retrotransposons, like retroviruses, replicate through reverse transcription of an mRNA intermediate and the resultant cDNA product is integrated into the genome by a conserved transposon or retrovirus encoded integrase protein. We purified Esp1 from yeast and identified an interaction between Esp1 and Ty1 integrase using mass spectrometry that was subsequently confirmed by co-immunoprecipitation analysis. Ty1 transposon mobility and insertion upstream of the SUF16 tRNA gene are both reduced in an esp1-1 strain but increased in cohesin mutant strains. Securin/Pds1, which is required for efficient localization of Esp1 to the nucleus, is also required for efficient Ty1 transposition. We propose that Esp1 serves two roles to mediate Ty1 transposition - one to remove cohesin and the second to target Ty1-IN to chromatin.


Subject(s)
Chromatin/genetics , Chromosome Segregation/genetics , Mitosis/genetics , Retroelements/genetics , Saccharomyces cerevisiae Proteins/genetics , Separase/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleolus/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA, Complementary , RNA, Transfer/genetics , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Securin/genetics , Securin/metabolism , Separase/metabolism , Cohesins
7.
PLoS Biol ; 12(10): e1001969, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25313861

ABSTRACT

Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER-mitochondria tethering complex called ERMES (the ER-mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER-mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Phosphatidylserines/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Genome-Wide Association Study , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae
8.
J Biol Chem ; 289(9): 5809-19, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24366873

ABSTRACT

Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer.


Subject(s)
Carboxy-Lyases/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Models, Molecular , Phosphatidylserines/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport, Active/physiology , Carboxy-Lyases/genetics , Endoplasmic Reticulum/genetics , Membrane Proteins/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Phosphatidylserines/genetics , Phospholipid Transfer Proteins/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
9.
EMBO Rep ; 14(5): 434-40, 2013 May.
Article in English | MEDLINE | ID: mdl-23519169

ABSTRACT

Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)--ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N-methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM-ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Phosphatidylcholines/biosynthesis , Saccharomyces cerevisiae/metabolism , Cell Membrane/ultrastructure , Endoplasmic Reticulum/ultrastructure , Gene Knockout Techniques , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Phosphoric Monoester Hydrolases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
J Cell Sci ; 125(Pt 20): 4791-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22797914

ABSTRACT

The endoplasmic reticulum (ER) forms a network of sheets and tubules that extends throughout the cell. Proteins required to maintain this complex structure include the reticulons, reticulon-like proteins, and dynamin-like GTPases called atlastins in mammals and Sey1p in Saccharomyces cerevisiae. Yeast cells missing these proteins have abnormal ER structure, particularly defects in the formation of ER tubules, but grow about as well as wild-type cells. We screened for mutations that cause cells that have defects in maintaining ER tubules to grow poorly. Among the genes we found were members of the ER mitochondria encounter structure (ERMES) complex that tethers the ER and mitochondria. Close contacts between the ER and mitochondria are thought to be sites where lipids are moved from the ER to mitochondria, a process that is required for mitochondrial membrane biogenesis. We show that ER to mitochondria phospholipid transfer slows significantly in cells missing both ER-shaping proteins and the ERMES complex. These cells also have altered steady-state levels of phospholipids. We found that the defect in ER to mitochondria phospholipid transfer in a strain missing ER-shaping proteins and a component of the ERMES complex was corrected by expression of a protein that artificially tethers the ER and mitochondria. Our findings indicate that ER-shaping proteins play a role in maintaining functional contacts between the ER and mitochondria and suggest that the shape of the ER at ER-mitochondria contact sites affects lipid exchange between these organelles.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vesicular Transport Proteins , Dynamins/genetics , Dynamins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Mutation , Phospholipids/genetics , Phospholipids/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
11.
BMC Bioinformatics ; 14: 354, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24305553

ABSTRACT

BACKGROUND: Synthetic Genetic Array (SGA) analysis is a procedure which has been developed to allow the systematic examination of large numbers of double mutants in the yeast Saccharomyces cerevisiae. The aim of these experiments is to identify genetic interactions between pairs of genes. These experiments generate a number of images of ordered arrays of yeast colonies which must be analyzed in order to quantify the extent of the genetic interactions. We have designed software that is able to analyze virtually any image of regularly arrayed colonies and allows the user significant flexibility over the analysis procedure. RESULTS: "Balony" is freely available software which enables the extraction of quantitative data from array-based genetic screens. The program follows a multi-step process, beginning with the optional preparation of plate images from single or composite images. Next, the colonies are identified on a plate and the pixel area of each is measured. This is followed by a scoring module which normalizes data and pairs control and experimental data files. The final step is analysis of the scored data, where the strength and reproducibility of genetic interactions can be visualized and cross-referenced with information on each gene to provide biological insights into the results of the screen. CONCLUSIONS: Analysis of SGA screens with Balony can be either automated or highly interactive, enabling the user to customize the process to their specific needs. Quantitative data can be extracted at each stage for external analysis if required. Beyond SGA, this software can be used for analyzing many types of plate-based high-throughput screens.


Subject(s)
Genes, Fungal , Genome-Wide Association Study/methods , High-Throughput Screening Assays/methods , Image Processing, Computer-Assisted/methods , Oligonucleotide Array Sequence Analysis/methods , Software , Colony Count, Microbial/instrumentation , Colony Count, Microbial/methods , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Genome-Wide Association Study/instrumentation , High-Throughput Screening Assays/instrumentation , Image Processing, Computer-Assisted/instrumentation , Internet , Mutation/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Software/trends , User-Computer Interface
12.
J Cell Biol ; 179(3): 467-83, 2007 Nov 05.
Article in English | MEDLINE | ID: mdl-17984322

ABSTRACT

How cells monitor the distribution of organelles is largely unknown. In budding yeast, the largest subdomain of the endoplasmic reticulum (ER) is a network of cortical ER (cER) that adheres to the plasma membrane. Delivery of cER from mother cells to buds, which is termed cER inheritance, occurs as an orderly process early in budding. We find that cER inheritance is defective in cells lacking Scs2, a yeast homologue of the integral ER membrane protein VAP (vesicle-associated membrane protein-associated protein) conserved in all eukaryotes. Scs2 and human VAP both target yeast bud tips, suggesting a conserved action of VAP in attaching ER to sites of polarized growth. In addition, the loss of either Scs2 or Ice2 (another protein involved in cER inheritance) perturbs septin assembly at the bud neck. This perturbation leads to a delay in the transition through G2, activating the Saccharomyces wee1 kinase (Swe1) and the morphogenesis checkpoint. Thus, we identify a mechanism involved in sensing the distribution of ER.


Subject(s)
Endoplasmic Reticulum/metabolism , Fungal Proteins/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , G2 Phase , Gene Deletion , Gene Targeting , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Electron , Models, Biological , Models, Genetic , Mutation , Time Factors
13.
BMC Biol ; 9: 85, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22136116

ABSTRACT

The lipid phosphatidic acid (PA) has important roles in cell signaling and metabolic regulation in all organisms. New evidence indicates that PA also has an unprecedented role as a pH biosensor, coupling changes in pH to intracellular signaling pathways. pH sensing is a property of the phosphomonoester headgroup of PA. A number of other potent signaling lipids also contain headgroups with phosphomonoesters, implying that pH sensing by lipids may be widespread in biology.


Subject(s)
Phosphatidic Acids/metabolism , Animals , Humans , Hydrogen-Ion Concentration , Phosphatidic Acids/chemistry , Proteins/metabolism , Signal Transduction
14.
Cell Chem Biol ; 29(5): 870-882.e11, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34520745

ABSTRACT

The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.


Subject(s)
Mycobacterium tuberculosis , Saccharomyces cerevisiae Proteins , Tuberculosis , 1-Phosphatidylinositol 4-Kinase/metabolism , Autophagy , Humans , Macrophages/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Tuberculosis/drug therapy
15.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34259806

ABSTRACT

ER-plasma membrane (PM) contacts are proposed to be held together by distinct families of tethering proteins, which in yeast include the VAP homologues Scs2/22, the extended-synaptotagmin homologues Tcb1/2/3, and the TMEM16 homologue Ist2. It is unclear whether these tethers act redundantly or whether individual tethers have specific functions at contacts. Here, we show that Ist2 directly recruits the phosphatidylserine (PS) transport proteins and ORP family members Osh6 and Osh7 to ER-PM contacts through a binding site located in Ist2's disordered C-terminal tethering region. This interaction is required for phosphatidylethanolamine (PE) production by the PS decarboxylase Psd2, whereby PS transported from the ER to the PM by Osh6/7 is endocytosed to the site of Psd2 in endosomes/Golgi/vacuoles. This role for Ist2 and Osh6/7 in nonvesicular PS transport is specific, as other tethers/transport proteins do not compensate. Thus, we identify a molecular link between the ORP and TMEM16 families and a role for endocytosis of PS in PE synthesis.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Lipid Metabolism/genetics , Phospholipids/metabolism , Receptors, Steroid/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , Biological Transport , Carboxy-Lyases/deficiency , Carboxy-Lyases/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Fatty Acid-Binding Proteins/genetics , Gene Expression Regulation, Fungal , Genetic Engineering , Golgi Apparatus/metabolism , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Models, Molecular , Phosphatidylethanolamines/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylserines/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Binding , Protein Conformation , Protein Interaction Mapping , Receptors, Steroid/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
16.
Dis Model Mech ; 13(7)2020 07 08.
Article in English | MEDLINE | ID: mdl-32471850

ABSTRACT

Advances in sequencing technology have led to an explosion in the number of known genetic variants of human genes. A major challenge is to now determine which of these variants contribute to diseases as a result of their effect on gene function. Here, we describe a generic approach using the yeast Saccharomyces cerevisiae to quickly develop gene-specific in vivo assays that can be used to quantify the level of function of a genetic variant. Using synthetic dosage lethality screening, 'sentinel' yeast strains are identified that are sensitive to overexpression of a human disease gene. Variants of the gene can then be functionalized in a high-throughput fashion through simple growth assays using solid or liquid media. Sentinel interaction mapping (SIM) has the potential to create functional assays for the large majority of human disease genes that do not have a yeast orthologue. Using the tumour suppressor gene PTEN as an example, we show that SIM assays can provide a fast and economical means to screen a large number of genetic variants.


Subject(s)
Genetic Variation , Genomics , PTEN Phosphohydrolase/genetics , Saccharomyces cerevisiae/genetics , Computational Biology , Databases, Genetic , Gene Expression Regulation, Fungal , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , PTEN Phosphohydrolase/metabolism , Phenotype , Reproducibility of Results , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Up-Regulation
17.
Cancer Res ; 80(13): 2775-2789, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32366478

ABSTRACT

As sequencing becomes more economical, we are identifying sequence variations in the population faster than ever. For disease-associated genes, it is imperative that we differentiate a sequence variant as either benign or pathogenic, such that the appropriate therapeutic interventions or surveillance can be implemented. PTEN is a frequently mutated tumor suppressor that has been linked to the PTEN hamartoma tumor syndrome. Although the domain structure of PTEN and the functional impact of a number of its most common tumor-linked mutations have been characterized, there is a lack of information about many recently identified clinical variants. To address this challenge, we developed a cell-based assay that utilizes a premalignant phenotype of normal mammary epithelial cells lacking PTEN. We measured the ability of PTEN variants to rescue the spheroid formation phenotype of PTEN-/- MCF10A cells maintained in suspension. As proof of concept, we functionalized 47 missense variants using this assay, only 19 of which have clear classifications in ClinVar. We utilized a machine learning model trained with annotated genotypic data to classify variants as benign or pathogenic based on our functional scores. Our model predicted with high accuracy that loss of PTEN function was indicative of pathogenicity. We also determined that the pathogenicity of certain variants may have arisen from reduced stability of the protein product. Overall, this assay outperformed computational predictions, was scalable, and had a short run time, serving as an ideal alternative for annotating the clinical significance of cancer-associated PTEN variants. SIGNIFICANCE: Combined three-dimensional tumor spheroid modeling and machine learning classifies PTEN missense variants, over 70% of which are currently listed as variants of uncertain significance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2775/F1.large.jpg.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Genetic Variation , Models, Biological , Mutation , PTEN Phosphohydrolase/genetics , Precancerous Conditions/pathology , Breast/metabolism , Breast Neoplasms/genetics , Cells, Cultured , Female , Humans , Machine Learning , Phenotype , Precancerous Conditions/genetics
18.
Dev Cell ; 52(4): 461-476.e4, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31928972

ABSTRACT

Phosphoinositides, diacylglycerolpyrophosphate, ceramide-1-phosphate, and phosphatidic acid belong to a unique class of membrane signaling lipids that contain phosphomonoesters in their headgroups having pKa values in the physiological range. The phosphomonoester headgroup of phosphatidic acid enables this lipid to act as a pH biosensor as changes in its protonation state with intracellular pH regulate binding to effector proteins. Here, we demonstrate that binding of pleckstrin homology (PH) domains to phosphatidylinositol 4-phosphate (PI4P) in the yeast trans-Golgi network (TGN) is dependent on intracellular pH, indicating PI4P is a pH biosensor. pH biosensing by TGN PI4P in response to nutrient availability governs protein sorting at the TGN, likely by regulating sterol transfer to the TGN by Osh1, a member of the conserved oxysterol-binding protein (OSBP) family of lipid transfer proteins. Thus, pH biosensing by TGN PI4P allows for direct metabolic regulation of protein trafficking and cell growth.


Subject(s)
Carrier Proteins/metabolism , Glucose/pharmacology , Phosphatidylinositol Phosphates/metabolism , Receptors, Steroid/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , trans-Golgi Network/metabolism , Humans , Hydrogen-Ion Concentration , Protein Transport , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Signal Transduction , Sweetening Agents/pharmacology , trans-Golgi Network/drug effects
19.
Nat Commun ; 11(1): 2073, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350270

ABSTRACT

Functional variomics provides the foundation for personalized medicine by linking genetic variation to disease expression, outcome and treatment, yet its utility is dependent on appropriate assays to evaluate mutation impact on protein function. To fully assess the effects of 106 missense and nonsense variants of PTEN associated with autism spectrum disorder, somatic cancer and PTEN hamartoma syndrome (PHTS), we take a deep phenotypic profiling approach using 18 assays in 5 model systems spanning diverse cellular environments ranging from molecular function to neuronal morphogenesis and behavior. Variants inducing instability occur across the protein, resulting in partial-to-complete loss-of-function (LoF), which is well correlated across models. However, assays are selectively sensitive to variants located in substrate binding and catalytic domains, which exhibit complete LoF or dominant negativity independent of effects on stability. Our results indicate that full characterization of variant impact requires assays sensitive to instability and a range of protein functions.


Subject(s)
Disease/genetics , Models, Genetic , Mutation, Missense/genetics , PTEN Phosphohydrolase/genetics , Animals , Behavior, Animal , Caenorhabditis elegans/physiology , Cells, Cultured , Dendrites/physiology , Drosophila/genetics , Drosophila/growth & development , Enzyme Assays , HEK293 Cells , Humans , Neoplasms/genetics , Nervous System/growth & development , Phosphorylation , Protein Stability , Proto-Oncogene Proteins c-akt/metabolism , Pyramidal Cells/metabolism , Rats, Sprague-Dawley , Saccharomyces cerevisiae/metabolism
20.
Article in English | MEDLINE | ID: mdl-31191292

ABSTRACT

Formation of synapses between neurons depends in part on binding between axonal and dendritic cell surface synaptic organizing proteins, which recruit components of the developing presynaptic and postsynaptic specializations. One of these presynaptic organizing molecules is protein tyrosine phosphatase σ (PTPσ). Although the protein domains involved in adhesion between PTPσ and its postsynaptic binding partners are known, the mechanisms by which it signals into the presynaptic neuron to recruit synaptic vesicles and other necessary components for regulated transmitter release are not well understood. One attractive candidate to mediate this function is liprin-α, a scaffolding protein with well-established roles at the synapse. We systematically mutated residues of the PTPσ intracellular region (ICR) and used the yeast dihydrofolate reductase (DHFR) protein complementation assay to screen for disrupted interactions between these mutant forms of PTPσ and its various binding partners. Using a molecular replacement strategy, we show that disrupting the interaction between PTPσ and liprin-α, but not between PTPσ and itself or another binding partner, caskin, abolishes presynaptic differentiation. Furthermore, phosphatase activity of PTPσ and binding to extracellular heparan sulfate (HS) proteoglycans are dispensable for presynaptic induction. Previous reports have suggested that binding between PTPσ and liprin-α is mediated by the PTPσ membrane-distal phosphatase-like domain. However, we provide evidence here that both of the PTPσ phosphatase-like domains mediate binding to liprin-α and are required for PTPσ-mediated presynaptic differentiation. These findings further our understanding of the mechanistic basis by which PTPσ acts as a presynaptic organizer.

SELECTION OF CITATIONS
SEARCH DETAIL