Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770102

ABSTRACT

Sea material is becoming increasingly popular and widely used as an adsorbent in wastewater treatment. Snail shell, a low-cost and natural animal waste material, has been shown to have a high calcium content (>99%) and a large potential surface area for the development of sustainable adsorbents. This paper presents a novel synthesis of methods for using snail shell absorbent materials in the treatment of wastewater containing heavy metals, textile dyes, and other organic substances. Modified biochar made from snail shells has gained popularity in recent years due to its numerous benefits. This paper discusses and analyzes modification methods, including impregnating with supplements, combining other adsorbents, synthesis of hydroxyapatite, co-precipitation, and the sol-gel method. The analysis of factors influencing adsorption efficiency revealed that pH, contact time, temperature, initial concentration, and adsorbent dose all have a significant impact on the adsorption process. Future research directions are also discussed in this paper as a result of presenting challenges for current snail adsorbents.

2.
Toxics ; 10(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35736887

ABSTRACT

This article provides a comprehensive assessment of dioxins contaminating the soil and evaluates the bioremediation technology currently being widely used, and also offers recommendations for future prospects. Soil pollution containing dioxins is extremely toxic and hazardous to human health and the environment. Dioxin concentrations in soils around the world are caused by a variety of sources and outcomes, but the main sources are from the consequences of war and human activities. Bioremediation technology (bioaugmentation, biostimulation, and phytoremediation) is considered an optimal and environmentally friendly technology, with the goal of applying native microbial communities and using plant species with a high biomass to treat contaminated dioxins in soil. The powerful bioremediation system is the growth of microorganisms that contribute to the increased mutualistic and competitive relationships between different strains of microorganisms. Although biological treatment technology can thoroughly treat contaminated dioxins in soil with high efficiency, the amount of gas generated and Cl radicals dispersed after the treatment process remains high. Further research on the subject is required to provide stricter control over the outputs noted in this study.

SELECTION OF CITATIONS
SEARCH DETAIL