Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Environ Sci Technol ; 53(8): 4542-4555, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30888807

ABSTRACT

The eco-toxicities of different crystalline phases of TiO2-NPs are controversial, and the effects and mechanisms on activated sludge are unclear. Therefore, we assessed the acute-toxicities (8-h exposure) of P25, anatase, and rutile TiO2-NPs in activated sludge using flow cytometry under simulated sunlight (hereafter-sun) and evaluated the relationship between sludge dewatering and bacterial cell death modes using Pearson's correlation coefficients ( r). Additionally, the response of the microbial community structure was examined by high throughput sequencing. Bacterial survival and death were observed by confocal laser scanning microscopy. Toxicity indicators (e.g., lactate dehydrogenase (LDH) and reactive oxygen species (ROS)) were determined. Overall, TiO2-NPs toxicity was concentration-dependent and crystalline-phase-dependent. The responses of bacterial communities to crystalline phases were more obvious than that of dosage. P25-sun and anatase-sun caused necrosis-like cell death via strong photo-oxidation confirmed by 131%/123% (1 mg/L) and 301%/254% (50 mg/L) LDH released by the control, while rutile-sun induced apoptosis-like death via intracellular ROS production increased to 165% (1 mg/L) and 420% (50 mg/L) of the control. P25 and anatase NPs had higher protein and polysaccharide affinities, while rutile NPs exhibited stronger attachment onto phospholipids. TiO2-NPs-sun reduced activated sludge dewaterability. Specific resistance to filtration (SRF) showed the strongest positive correlation with tightly bound extracellular polymeric substances (EPS) and total soluble microbial byproducts ( r = 0.974, p < 0.01) and was closely related to EPS content and composition, especially the increased bound water (BW) content and sludge protein concentrations. High Pearson correlation coefficients were observed between early apoptotic cells and BW content ( r = 0.952, p < 0.01) resulting from massive polysaccharides and between necrotic (including late apoptotic) cells and SRF ( r = 0.959, p < 0.01) resulting from high protein and EPS concentrations. Thus, in response to TiO2-NPs, bacterial cell death modes differentially weakened sludge dewatering.


Subject(s)
Nanoparticles , Sewage , Bacteria , Cell Death , Filtration
2.
Ecotoxicol Environ Saf ; 180: 215-226, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31100588

ABSTRACT

Despite previous efforts and the rapid progress on elucidating the impact of perfluorooctanesulfonate (PFOS) on the environment, its effects on riparian plants, a key component of aquatic ecosystems, are still poorly understood. A 48-day hydroponic experiment was carried out on two typical riparian species (Acorus calamus and Phragmites communis) to examine the toxic effects of PFOS on these plants. The results showed that, at high concentration (more than 10 mg L-1), PFOS could prevent chlorophyll accumulation (reduced by 13.7-22.2% at 10 mg L-1 PFOS and 22.4-30.0% at 50 mg L-1 PFOS for 48 days) and soluble protein synthesis (reduced by 2.3-9.0% at 10 mg L-1 PFOS and 10.6-26.8% at 50 mg L-1 PFOS for 48 days). Contrastingly, less than 1 mg L-1 of PFOS could induce chlorophyll accumulation (increased by 18.6% in A. calamus roots, 11.3% in A. calamus leaves, and 13.6% in P. communis roots at 1 mg L-1 PFOS for 3 days) and soluble protein synthesis (increased by 6.1% in A. calamus roots, 18.4% in A. calamus leaves, 9.7% in P. communis roots, 23.4% in P. communis stems, and 24.0% in P. communis leaves, at 1 mg L-1 PFOS for 6 days). In addition, PFOS led to oxidative stress, as revealed by the elevated concentrations of malonaldehyde and hydrogen peroxide, and reduced the activities of antioxidant enzymes such as superoxide dismutase (reduced by 10.3% in P. communis stems at 50 mg L-1 PFOS for 48 days), catalase (reduced by 20.6-50.3% in test species at 50 mg L-1 PFOS for 48 days), and peroxidase (reduced by 24.9-37.7% in test species at 50 mg L-1 PFOS for 48 days). The biomarkers of both plants changed rapidly in the first half of the experiment (0-24 days) and stabilized in the second half of the experiment (24-48 days). The risk and related factors of PFOS on riparian plants were evaluated by using these biomarkers. Experiments showed that P. communis was more resistant to low concentration (<10 mg L-1) of PFOS than A. calamus.


Subject(s)
Acorus/drug effects , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Oxidative Stress , Poaceae/drug effects , Acorus/microbiology , Antioxidants/metabolism , Catalase/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Peroxidase/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Poaceae/metabolism , Superoxide Dismutase/metabolism
3.
Ecotoxicol Environ Saf ; 142: 230-236, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28415026

ABSTRACT

Aquatic sediments are believed to be an important sink for carbon nanotubes (CNTs). With novel properties, CNTs can potentially disturb the fate and mobility of the co-existing contaminants in the sediments. Only toxic pollutants have been investigated previously, and to the best of our knowledge, no data has been published on how CNTs influence phosphorus (P) adsorption on aquatic sediments. In this study, multi-walled carbon nanotubes (MWCNTs) were selected as model CNTs. Experimental results indicated that compared to pseudo-first order and intraparticle diffusion models, the pseudo-second-order model is better for describing the adsorption kinetics of sediments and MWCNT-contaminated sediments. Adsorption isotherm studies suggested that the Langmuir model fits the isotherm data well. With the increase in the MWCNT-to-sediment ratio from 0.0% to 5.0%, the theoretical maximum monolayer adsorption capacity (Qmax) for P increased from 0.664 to 0.996mg/g. However, the Langmuir isotherm coefficient (KL) significantly decreased from 4.231L/mg to 2.874L/mg, indicating the decrease in the adsorption free energy of P adsorbed on the sediments after MWCNT contamination. It was suggested that P was released more easily to the overlying water after the re-suspension of sediments. Moreover, the adsorption of sediments and sediment-MWCNT mixture was endothermic and physical in nature. Results obtained herein suggested that the change in the specific surface area and zeta potential of sediments is related to MWCNT contamination, and the large adsorption capacity of MWCNTs is probably the main factor responsible for the variation in the adsorption of P on aquatic sediments.


Subject(s)
Geologic Sediments/chemistry , Nanotubes, Carbon/analysis , Phosphorus/chemistry , Water Pollutants, Chemical/analysis , Adsorption , China , Kinetics , Lakes/chemistry , Models, Theoretical
4.
Sci Total Environ ; 950: 175367, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39127200

ABSTRACT

Wetlands are sources and sinks for nanoplastics (NPs), where adsorption and uptake by plants constitute a crucial pathway for NPs accumulation. This study found that Sphagnum exhibited a high potential (~89.75 %) to intercept NPs despite the lack of root systems and stomata. Two pathways for 100nm polystyrene NPs accumulation in Sphagnum were located: (i) Spiral interception and foliar adsorption. Efficient adsorption is credited to the micro/nano-interlocked leaf structure, which is porous, hydrophilic and rough. (ii) Intracellular enrichment through pores. Fluorescence tracking indicates pseudo-leaves (lateral > cephalic branches) as primary organs for internalization. Accumulation of differently functionalized NPs was characterized: PS-Naked-NPs (PS), PS-COOH-NPs (PC) and PS-NH2-NPs (PN) were all largely retained by pathway (i), while pathway (ii) mainly uptake PN and PC. Unlike PS aggregation in transparent cells, PC enrichment in chloroplast cells and PN in intercellular spaces reduced pigment content and fluorescence intensity. Further, the effects of the accumulated NPs on the ecological functions of Sphagnum were evaluated. NPs reduce carbon flux (assimilation rate by 57.78 %, and respiration rate by 33.50%), significantly decreasing biomass (PS = 13.12 %, PC = 26.48 %, PN = 35.23 %). However, toxicity threshold was around 10 µg/mL, environmental levels (≤1 µg/mL) barely affected Sphagnum. This study advances understanding of the behavior and fate of NPs in non-vascular plants, and provides new perspectives for developing Sphagnum substrates for NPs interception.


Subject(s)
Polystyrenes , Sphagnopsida , Wetlands , Adsorption , Nanoparticles , Water Pollutants, Chemical
5.
J Hazard Mater ; 479: 135670, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39213769

ABSTRACT

Microalgae-bacteria consortia (MBC) system has been shown to enhance the efficiency of microalgae in wastewater treatment, yet its effectiveness in treating levofloxacin (LEV) wastewater remains unexplored. This study compared the treatment of LEV wastewater using pure Chlorella pyrenoidosa (PA) and its MBC constructed with activated sludge bacteria. The results showed that MBC improved the removal efficiency of LEV from 3.50-5.41 % to 33.62-57.20 % by enhancing the growth metabolism of microalgae. The MBC increased microalgae biomass and extracellular polymeric substance (EPS) secretion, yet reduced photosynthetic pigment content compared to the PA. At the phylum level, Proteobacteria and Actinobacteriota are the major bacteria in MBC. Furthermore, the transcriptome reveals that the growth-promoting effects of MBC are associated with the up-regulation of genes encoding the glycolysis, the citrate cycle (TCA cycle), and the pentose phosphate pathway. Enhanced carbon fixation, coupled with down-regulation of photosynthetic electron transfer processes, suggests an energy allocation mechanism within MBC. The up-regulation of porphyrin and arachidonic acid metabolism, along with the expression of genes encoding LEV-degrading enzymes, provides evidence of MBC's superior tolerance to and degradation of LEV. Overall, these findings lead to a better understanding of the underlying mechanisms through which MBC outperforms PA in treating LEV wastewater.


Subject(s)
Anti-Bacterial Agents , Chlorella , Levofloxacin , Microalgae , Transcriptome , Wastewater , Chlorella/metabolism , Chlorella/genetics , Chlorella/growth & development , Chlorella/drug effects , Levofloxacin/pharmacology , Microalgae/metabolism , Microalgae/genetics , Microalgae/growth & development , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects , Waste Disposal, Fluid/methods , Microbial Consortia/genetics , Biodegradation, Environmental , Sewage/microbiology , Photosynthesis
6.
J Hazard Mater ; 479: 135676, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39217921

ABSTRACT

Plants affect soil microorganisms through the release of root exudates under pollution stress. This process may affect rhizosphere priming effect (RPE) and alter the rate of soil organic matter decomposition. However, the influence of plants on the decomposition of organic matter in soil subjected to pollution stress remains unclear. We studied the effects of exposure to perfluorooctanesulfonic (PFOS) and its alternative, chlorinated polyfluoroalkyl ether sulfonic (F-53B), at concentrations of 0.1 mg/kg and 50 mg/kg on the RPE of reed. We conducted our experiments in an artificial climate chamber and used the natural 13C tracer method to determine RPE. In the PFOS-exposed groups, the RPE was negative, with values of -11.45 mg C kg-1 soil d-1 in the low PFOS group and -8.04 mg C kg-1 soil d-1 in the high PFOS group. In contrast, in the F-53B-exposed groups, the RPE was positive, with values of 8.26 mg C kg-1 soil d-1 in the low F-53B group and 12.18 mg C kg-1 soil d-1 in the high F-53B group. Exposure of reeds to PFOS/F-53B stress resulted in differential effects on extracellular enzyme activities. The observed positive and negative RPE phenomena could be attributed to variations in extracellular enzyme activities. In conclusion, RPE responded differently under PFOS/F-53B exposure.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Rhizosphere , Soil Pollutants , Fluorocarbons/toxicity , Fluorocarbons/chemistry , Fluorocarbons/metabolism , Alkanesulfonic Acids/toxicity , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Soil/chemistry , Poaceae/metabolism , Poaceae/drug effects , Soil Microbiology , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Biodegradation, Environmental
7.
Chemosphere ; 362: 142674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908443

ABSTRACT

Triclocarban (TCC), an emerging contaminant in water environments, its effects on freshwater biofilms remain insufficiently understood. This study investigates the effects of TCC exposure (at concentrations of 10 µg L-1 and 10 mg L-1) on mature freshwater biofilms. TCC was found to inhibit biofilm activity as evidenced by changes in surface morphology and the ratio of live/dead cells. Moreover, both concentrations of TCC were observed to modify the structure of the biofilm community. Metabolomics analysis revealed an overlap in the toxicity mechanisms and detoxification strategies triggered by various concentrations of TCC in biofilms. However, the higher toxicity induced by 10 mg L-1 TCC resulted from the downregulation of proline betaine, disrupting the homeostasis of cellular osmotic pressure regulation in biofilms. Notably, lipid and lipid-like molecules showed high sensitivity to different concentrations of TCC, indicating their potential as biomarkers for TCC exposure. Annotation of the differential metabolites by KEGG revealed that alterations in amino acid and carbon metabolism constituted the primary response mechanisms of biofilms to TCC. Moreover, the biofilm demonstrated enhanced nucleic acid metabolism, which bolstered resistance against TCC stress and heightened tolerance. Furthermore, elevated TCC concentrations prompted more robust detoxification processes for self-defense. Overall, short-term exposure to TCC induced acute toxicity in biofilms, yet they managed to regulate their community structure and metabolic levels to uphold oxidative homeostasis and activity. This research contributes to a deeper comprehension of TCC risk assessment and policy control in aquatic environments.


Subject(s)
Biofilms , Carbanilides , Fresh Water , Microbiota , Water Pollutants, Chemical , Biofilms/drug effects , Carbanilides/toxicity , Water Pollutants, Chemical/toxicity , Microbiota/drug effects , Metabolome/drug effects , Metabolomics
8.
Chemosphere ; 363: 142798, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38977246

ABSTRACT

The use of nanocatalytic particles for the removal of refractory organics from wastewater is a rapidly growing area of environmental purification. However, little has been done to investigate the effects of nanoparticles on soil-plant systems with antibiotic contamination. This work assessed the effect of molybdenum disulfide (MoS2) on the soil-Phragmites communis system containing levofloxacin (LVX). The results showed that the addition of MoS2 had restoration potential for stressed plant. The MoS2 with catalytic activity promoted the transformation of LVX in rhizosphere soils. The transformation pathways of LVX in the different exposure groups were proposed. The continuous output of radicals in the high MoS2 dosage group facilitated the transformation of LVX to small molecule compounds, which were eventually mineralized. Moreover, the electron-density-difference analysis revealed the easier flow of electrons from the MoS2 surface towards the LVX molecules. This finding provides theoretical support for the application of nanocatalytic particles in ecological environments.


Subject(s)
Disulfides , Levofloxacin , Molybdenum , Nanoparticles , Soil Pollutants , Soil , Levofloxacin/chemistry , Molybdenum/chemistry , Disulfides/chemistry , Soil/chemistry , Nanoparticles/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Anti-Bacterial Agents/chemistry , Poaceae , Rhizosphere , Catalysis
9.
Sci Total Environ ; 930: 172722, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38677441

ABSTRACT

Inland waters (IW), estuarine areas (EA), and offshore areas (OA) function as aquatic systems in which the transport of carbon components results in the release of greenhouse gases (GHGs). Interconnected subsystems exhibit a greater greenhouse effect than individual systems. Despite this, there is a lack of research on how carbon loading and its components impact GHG emissions in various aquatic systems. In this study, we analyzed 430 aquatic sites to explore trade-off mechanisms among dissolved organic carbon (DOC), particulate organic carbon, dissolved inorganic carbon (DIC), and GHGs. The results revealed that IW emerged as the most significant GHG source, possessing a comprehensive global warming potential (GWP) of 0.78 ± 0.08 (10-2 Pg CO2-ep ha-1 year-1) for combined carbon dioxide, methane, and nitrous oxide. This surpassed the cumulative potentials of EA and OA (0.35 ± 0.05 (10-2 Pg CO2-ep ha-1 year-1)). Additionally, structural equation modeling indicated that GHG emissions resulted from a combination of carbon component loading and environmental factors. DOC exhibited a positive correlation with GWPs when influenced by biodegradable DOC. Total alkalinity and pH influenced DIC, leading to elevated pCO2 in aquatic systems, thereby enhancing GWPs. Predictive modeling using backpropagation artificial neural networks (BP-ANN) for GWPs, incorporating carbon components and environmental factors, demonstrated a good fit (R2 = 0.6078, RMSEaverage = 0.069, p > 0.05) between observed and predicted values. Enhancing the estimation of aquatic region feedback to GHG changes was achieved by incorporating corresponding water quality parameters. In summary, this study underscores the pivotal role of carbon components and environmental factors in aquatic regions for GHG emissions. The application of BP-ANN to estimate greenhouse effects from aquatic regions is highlighted, providing theoretical and experimental support for future advancements in monitoring and developing policies concerning the influence of water quality on GHG emissions.

10.
Environ Pollut ; 335: 122273, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37506800

ABSTRACT

The effect of the molybdenum disulfide (MoS2)/levofloxacin (LVF) co-exposure was explored on Phragmites communis and rhizosphere soil bacterial communities. The sequence of MoS2/LVF exposure and the different MoS2 dosages (10 mg/kg and 100 mg/kg) contributed to different degrees of effect on the plant after 42 days of exposure. The treatment with priority addition of low dosage MoS2 significantly ameliorated P. communis growth, with root length growing up to 532.22 ± 46.29 cm compared to the sole LVF stress (200.04 ± 29.13 cm). Besides, MoS2 served as an alleviator and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in P. communis under LVF stress, and activated bacteria in rhizosphere soil. These rhizosphere soil microbes assisted in mitigating toxic pollution in the soil and inducing plant resistance to external stress, such as bacteria genera Bacillus, Microbacterium, Flavihumibacter and altererythrobacter. Potential functional profiling of bacterial community indicated the addition of MoS2 contributed to relieve the reduction in functional genes associated with amino acid metabolism and the debilitation of gram_negative and aerobic phenotypic traits caused by LVF stress. This finding reveals the effect of different exposure sequences of MoS2 nanoparticles and antibiotic for plant-soil systems.


Subject(s)
Molybdenum , Rhizosphere , Levofloxacin , Poaceae , Bacteria/metabolism , Soil/chemistry , Plants , Soil Microbiology
11.
J Hazard Mater ; 443(Pt A): 130119, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36265386

ABSTRACT

Chlorinated polyfluoroalkyl ether sulfonate (F-53B) and perfluorooctanesulfonate (PFOS) are used and emitted as fog inhibitors in the chromium plating industry, and they are widely detected worldwide. To study the effects of F-53B and PFOS on the rhizosphere defense system, they were added at two levels (0.1 and 50 mg L-1) to the soil where different plants (Lythrum salicaria and Phragmites communis) were grown. In bulk soils, high concentrations of F-53B/PFOS resulted in significant increases in soil pH, NH4+-N, and NO3--N (the effect of PFOS on NO3--N was not significant). Moreover, the extent of the effects of PFOS and F-53B on the physicochemical properties of bulk soils were different (e.g., PFOS caused an increase of NH4+-N by 8.94%-45.97% compared to 1.63%-25.20% for F-53B). Root exudates and PFASs together influenced the physicochemical properties of rhizosphere soils (e.g., TOC increased significantly in contaminated rhizosphere soils but did not change in non-bulk soils). Under the influence of F-53B/PFOS, the root exudates regulated by plants were changed and weakened the effect of F-53B/PFOS on microbial community of rhizosphere soil. The rhizosphere defense systems of different plants have both similarities and differences in response to different substances and concentrations.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Fluorocarbons/toxicity , Rhizosphere , Alkanesulfonic Acids/toxicity , Soil
12.
Water Res ; 217: 118447, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35429889

ABSTRACT

Light as an environmental factor can affect the process of anaerobic digestion, but there is no systematic study in municipal wastewater sludge mesophilic digestion. In this study, the effects of light on the performance of the anaerobic digestion system and photo-anaerobic microbiota (PAM) were evaluated in lighted anaerobic batch digesters (LABRs). The methane yield from the reactor under the dark condition (LABR0) was 179.2 mL CH4/g COD, which was lower than 305.4 mL CH4/g COD and 223.0 mL CH4/g COD (n = 3, p < 0.05) from reactors under the light intensity of 3600 lm (LABR1) and 7200 lm (LABR2), respectively. The dominant genera in the bacterial and archaeal communities were Bacillus and Methanosarcina under light conditions, Enterococcus and Methanobacterium under dark conditions. And these two bacteria acted as electroactive bacterial genera, indicating that light changes the combination of direct interspecies electron transfer (DIET) microbial partners and activates the DIET pathway for methane production. The electron conduction pathways analysis further suggests that biological DIET (bDIET) between microbial biomass, rather than DIET via conductive material (cDIET) between microbes and conductive materials, is promoted and behaves as the dominant factor enhancing methane production under light conditions. The morphology of microorganisms and the amount and properties of EPS corroborate these views. Our findings are guided to anaerobic digester constructions under the outdoor environment with light exposure.


Subject(s)
Microbiota , Sewage , Anaerobiosis , Bacteria/metabolism , Bioreactors/microbiology , Digestion , Electron Transport , Methane/metabolism , Sewage/microbiology
13.
Environ Pollut ; 295: 118684, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34921944

ABSTRACT

The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 µg L-1) and high (1000 µg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Microbiota , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Sewage
14.
Environ Pollut ; 306: 119471, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35577260

ABSTRACT

Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.


Subject(s)
Nanoparticles , Sewage , Bacteria/metabolism , Bioreactors/microbiology , Humans , Microplastics , Nitrogen/analysis , Sewage/chemistry , Waste Disposal, Fluid/methods
15.
J Hazard Mater ; 439: 129609, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35870209

ABSTRACT

In recent years, many efforts have been made to modulate the interaction between carriers and nanoparticles under the integrity of the active site structure. Herein, SrFeO3 @CoSe2 nanocomposite was fabricated by loading CoSe2 onto SrFeO3 particles with a perovskite structure in the form of an encapsulation. The optimized SFO@CS-0.3 catalyst exhibited high catalytic activity in photo-peroxymonosulfate-based reaction and the catalyst was structurally stable over a wide temperature range. Characterization and theoretical results demonstrated that the charge in the SrFeO3 was transferred from Fe to Co cation of the CoSe2 via the interfacial oxygen atom. Moreover, the newly established oxygen-metal structure (Fe-Ov-Co) acted as a catalytic site, accelerating the cleavage of the peroxymonosulfate bond to generate radicals, which were desorbed into solution to attack the contaminant. Simultaneously, the heterojunction constructed by the catalyst underwent internal electron transfer under visible light, creating a field in which multiple reactive oxygen species co-oxidized organic contaminant.


Subject(s)
Cobalt , Iron , Cobalt/chemistry , Electrons , Iron/chemistry , Oxygen , Peroxides/chemistry
16.
Sci Total Environ ; 758: 143633, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33223161

ABSTRACT

The source, distribution, migration, and fate of microplastics (MPs) in aquatic and terrestrial ecosystems have received much attention. However, the relevant reports in wetland ecosystems, the boundary area between water and land, are still rare. Where are the sources and sinks of MPs in the wetland? The latest researches have shown that the sources of MPs in wetlands include sewage discharge, surface runoff, and plastic wastes from aquaculture. Fibers and fragments are the most common shapes, and PE, PP, PS can be detected in water or sediment matrices, and biota of wetlands. The distribution is affected by hydrodynamic conditions, sediment properties, and vegetation coverage. Factors affecting the vertical migration of MPs include their own physical and chemical properties, the combination of substances that accelerate deposition (mineral adsorption and biological flocculation), and resuspension. Minerals tend to adsorb negatively charged MPs while algae aggregates have a preference for positively charged MPs. The wetlands vegetation can trap MPs and affect their migration. In water matrices, MPs are ingested by organisms and integrated into sediments, which makes them seem undetectable in the wetland ecosystem. Photodegradation and microbial degradation can further reduce the MPs in size. Although recent research has increased, we are still searching for a methodological harmonization of the detection practices and exploring the migration rules and fate patterns of MPs. Our work is the first comprehensive review of the source, distribution, migration, and fate of MPs in wetland ecosystems. It reveals the uniqueness of wetland habitat in the research of MPs and indicates the potential of wetlands acting as sources or sinks for MPs.

17.
Environ Pollut ; 279: 116904, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33765504

ABSTRACT

Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS-COOH and PS-NH2) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH2 NPs and EPS were CO and O-C-O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH2 NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH2 was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.


Subject(s)
Polystyrenes , Sewage , Extracellular Polymeric Substance Matrix , Microplastics
18.
Sci Total Environ ; 763: 143029, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33129526

ABSTRACT

Plants are vital components of the nitrogen (N) cycling in the riparian zones. Understanding of N uptake strategies of riparian plants, including N sources and preference in N forms (ammonium (NH4+) vs. nitrate (NO3-)), is essential to advance our knowledge on the role that plants play in regulating nutrient biogeochemical cyclings in the riparian areas. In this study, stable N isotopes (δ15N) of three riparian plants, including Acorus calamus, Canna indica and Phragmites australis, and the δ15N of NH4+ and NO3- in different sources were measured during the plant growing season (June-September) in the Taihu Lake Basin. The dissolved inorganic N (DIN) from river water, groundwater, rainwater and soil were considered as the major N sources for plants in the riparian ecosystem. Our results indicated that soil was the largest source for plant N nutrition, with significantly different (P < 0.05) contributions from soil observed among plant species (80.5 ± 4.1, 73.9 ± 2.8 and 58.7 ± 6.1% for A. calamus, C. indica, and P. australis, respectively). Meanwhile, complex water networks, shallow water tables, and high DIN content in rainwater lead to nonignorable N contributions from river water, groundwater and rainwater to plants. Groundwater contributed more percentage of N to P. australis (12.8 ± 3.2%) than A. calamus (6.1 ± 1.9%) and C. indica (8.0 ± 1.5%), which is likely attributed to the deeper roots of P. australis. All plants showed similar N preference for NO3- during the growing season. External environmental conditions and plant characteristics and adaption to more abundant soil NO3- content are possible explanations. Our research could provide important information for vegetation selections during the process of riparian ecological restoration. Reasonable choice of vegetation is essential to plant growth and water quality management, especially in agricultural watersheds where N concentrations are relatively high in agricultural runoff due to the wide uses of N fertilizers.


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Isotopes , Lakes , Nitrates/analysis , Nitrogen , Seasons , Water Pollutants, Chemical/analysis
19.
Sci Total Environ ; 741: 140494, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32886976

ABSTRACT

Here, we examined the effects of low and high concentrations of perfluorooctanesulfonate (PFOS) on rhizosphere soil N cycling processes in the presence of Lythrum salicaria and Phragmites communis over 4 months. Compared with the control group, the nitrate nitrogen (NO3--N) content of the bulk soil in the low PFOS (0.1 mg kg-1) treatment significantly decreased (27.7%), the ammonium nitrogen (NH4+-N) content significantly increased (8.7%), and the pH value and total organic carbon (TOC) content slightly increased (0.3% and 1.1%, respectively). Compared with the low PFOS treatment, the content of NO3-N, NH4+-N and pH value in the bulk soil of the high PFOS treatment (50 mg kg-1) significantly increased (1.0%, 53.8% and 61.8%, respectively), and the TOC content significantly decreased (8.2%). Soil protease levels were high in the low PFOS treatment, but low in the high PFOS treatment. PFOS produced inverted U-shaped responses in the potential nitrification (1.5, 3.0, and 1.1 mg N d-1 kg-1 in no, low, and high PFOS, respectively), denitrification (0.19, 0.30, and 0.22 mg N d-1 kg-1 in no, low, and high PFOS, respectively), and N2O emission rates (0.01, 0.03, and 0.02 mg N d-1 kg-1 in no, low, and high PFOS, respectively) of bulk soil. The abundance of the archaea amoA gene decreased with increasing PFOS concentration, whereas that of bacterial amoA increased; inverted U-shaped responses were observed for narG, nirK, nirS, and nosZ. In the PFOS-contaminated rhizosphere soil, the observed changes differed from those in the bulk soil and differed between treatments. P. communis tended to upregulate each step of the nitrogen cycle under low PFOS conditions, whereas L. salicaria tended to inhibit them. Under high PFOS conditions, both test plants tended to act as inhibitors of the soil N-cycle; thus, the effects of PFOS on soil N transformation were plant-specific.


Subject(s)
Rhizosphere , Soil , Alkanesulfonic Acids , Denitrification , Fluorocarbons , Nitrification , Nitrogen/analysis , Nitrogen Cycle , Soil Microbiology
20.
Water Res ; 182: 115953, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32559664

ABSTRACT

Most of the current studies on the toxicology of pristine nanoparticles (NPs) are environmentally irrelevant, because their ''aging'' process accompanied by the physicochemical transformation is inevitable in the environment. Considering aging phenomenon will gain a better understanding of the toxicity and fate of NPs in the environment. Here, we focused on the physicochemical transformation of anatase-NPs (TiO2-A) and rutile-NPs (TiO2-R) after 90 days of aging and investigated the responses of freshwater biofilm formation to the stress changes of naturally aged TiO2-NPs (aTiO2-NPs). We found that after aging, the TiO2-NPs underwent sophisticated physicochemical transformations in the original morphology and microstructure owing to organic and crystal salts inclusions, such as energy band changes and the formation of Ti3+ on the NPs surfaces. These comprehensive transformations increased the stability of NPs in the exposed suspension. However, the physicochemical transformations were crystal-forms-dependent, and aging did not change the crystal structure and crystallinity. Interestingly, compared to pristine NPs, aTiO2-NPs showed much lower cytotoxicity and had the weaker ability to promote or inhibit the biofilm formation (p < 0.05) owing to the passivation of photoactivity caused by the comprehensive effect of the inclusions, especially for aTiO2-A. Regardless of aging or not of crystal forms, responses of biofilm formation were exposure-concentration-dependent, namely low concentration promotion (0.1 mg/L) and high concentration inhibition (10 mg/L), e.g., role transition of the pioneers (algae or bacteria) in initial colonization, extracellular polymeric substances (EPS) secretion and compositions of development stages with polysaccharide (PS)-rich and protein (PRO)-rich stages, and biomass and cell activity at different depths of mature biofilms. The reactive oxygen species (ROS) induced by TiO2-NPs showed typical hormesis. The changing trends of the autoinducers (c-di-GMP and quorum sensing signals including AHL and AI-2) were highly consistent with the growth stages of biofilms and were stimulated or suppressed by TiO2-NPs. The NPs crystal-dependently changed the microorganism community structures, while the UPGMA clustering of bacteria was based on the growth stages of the biofilms. The toxic mechanisms revealed that photoactivity and nanoscale retention of particles are the main reasons for the differences in the ecological stress capacity of four kinds of TiO2-NPs. Aging reduced characteristic differences of two pristine NPs and even reversed their relative stresses levels (p > 0.05). However, the toxicity of high-concentration aTiO2-NPs (10 mg/L) remained serious in a water environment. This study provides a better understanding for the water environmental risks evaluation and policy control of nanoparticles, that is, the effect of time aging has to be considered.


Subject(s)
Nanoparticles , Titanium , Biofilms , Fresh Water
SELECTION OF CITATIONS
SEARCH DETAIL