Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Metab Brain Dis ; 39(1): 147-171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37542622

ABSTRACT

Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Schizophrenia/diagnosis , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Genomics , RNA-Binding Proteins/genetics
2.
Acta Pharmacol Sin ; 44(10): 2075-2090, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37344564

ABSTRACT

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and ß-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFß1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, ß-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and ß-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/ß-catenin signaling pathway.


Subject(s)
Pregnane X Receptor , Renal Insufficiency, Chronic , Wnt Signaling Pathway , Animals , Humans , Mice , beta Catenin/metabolism , Fibrosis , Mammals/metabolism , Pregnane X Receptor/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Rifampin/pharmacology
3.
Gut ; 71(11): 2205-2217, 2022 11.
Article in English | MEDLINE | ID: mdl-35173042

ABSTRACT

OBJECTIVE: Dysbiosis of the intestinal fungal community has been observed in inflammatory bowel disease (IBD); however, its potential role in IBD development and prevention remains unclear. Here, we explored the biological effects and molecular mechanisms of intestinal fungi isolated from human faeces on colitis in mice. DESIGN: Intestinal fungal strains with differential abundance in IBD were cultivated in human faeces and their effects on various mouse models of experimental colitis were evaluated. In addition, the bioactive metabolites secreted by the target fungus were accurately identified and their pharmacological effects and potential molecular targets were investigated in vitro and in vivo. RESULTS: The abundance of Candida spp was significantly higher in patients with IBD. After large-scale human intestinal fungal cultivation and functional analysis, Candida metapsilosis M2006B significantly attenuated various models of experimental colitis in wild-type, antibiotic-treated, germ-free, and IL10-/- mice by activating farnesoid X receptor (FXR). Among the seven acyclic sesquiterpenoids (F1-F7) identified as major secondary metabolites of M2006B, F4 and F5 attenuated colitis in mice by acting as novel FXR agonists. The therapeutic effects of M2006B and its metabolites on colitis via specific FXR activation were confirmed in Fxr -/- mice. CONCLUSION: This study revealed that C. metapsilosis M2006B significantly attenuated colitis in mice and identified two acyclic sesquiterpenoids (F4 and F5) as major active metabolites of M2006B. Notably, these metabolites were able to effectively treat experimental colitis by selectively activating FXR. Together, this study demonstrates that M2006B could be a beneficial intestinal fungus for treating and preventing IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Sesquiterpenes , Animals , Anti-Bacterial Agents/therapeutic use , Candida parapsilosis , Colitis/drug therapy , Colitis/metabolism , Disease Models, Animal , Humans , Inflammatory Bowel Diseases/drug therapy , Interleukin-10 , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use
4.
Metab Brain Dis ; 37(5): 1365-1371, 2022 06.
Article in English | MEDLINE | ID: mdl-35445959

ABSTRACT

Schizophrenia stands out as one of the most devastating psychiatric disorders. Previous findings have shown that schizophrenia is a polygenic genetic disorder. Thus, abnormal neurodevelopment and neurogenesis may be associated with the etiology of schizophrenia, so genes which affect these processes may be potential candidate genes of schizophrenia. Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) gene is a member of the mitogen-activated protein kinase family. Taking into account previous findings, MAP3K4 plays a crucial role in the fundamental pathology of various nervous system diseases. In the present study, we aim to explore the association of MAP3K4 and schizophrenia in an independent case-control sample including 627 schizophrenic patients and 1175 healthy controls from a Northeast Chinese Han population. Both the allelic and genotypic association analyses showed that 6 SNPs in MAP3K4 were significantly associated with schizophrenia (rs590988, rs625977, rs9295134, rs12110787, rs1001808 and rs9355870). After rigorous Bonferroni correction, 4 SNPs (rs9295134, rs12110787, rs1001808 and rs9355870) were still significantly associated with the disease. The haplotype composed of these four SNPs also showed significantly global and individual association with schizophrenia. These results suggest that MAP3K4 is a susceptibility gene for schizophrenia in the Northeast Chinese Han population.


Subject(s)
MAP Kinase Kinase Kinase 4/genetics , Schizophrenia , Case-Control Studies , China/epidemiology , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes , Humans , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics
5.
Am J Physiol Renal Physiol ; 321(5): F617-F628, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34569253

ABSTRACT

The ligand-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating renal function. Activation of FXR by its specific agonists exerts renoprotective action in animals with acute kidney injury (AKI). In the present study, we aimed to identify naturally occurring agonists of FXR with potential as therapeutic agents in renal ischemia-reperfusion injury. In vitro and in vivo FXR activation was determined by a dual-luciferase assay, docking analysis, site-directed mutagenesis, and whole kidney transcriptome analysis. Wild-type (WT) and FXR knockout (FXR-/-) mice were used to determine the effect of potential FXR agonist on renal ischemia-reperfusion injury (IRI). We found that alisol B 23-acetate (ABA), a major active triterpenoid extracted from Alismatis rhizoma, a well-known traditional Chinese medicine, can activate renal FXR and induce FXR downstream gene expression in mouse kidney. ABA treatment significantly attenuated renal ischemia-reperfusion-induced AKI in WT mice but not in FXR-/- mice. Our results demonstrate that ABA can activate renal FXR to exert renoprotection against ischemia-reperfusion injury-induced AKI. Therefore, ABA may represent a potential therapeutic agent in the treatment of ischemic AKI.NEW & NOTEWORTHY In the present study, we found that alisol B 23-acetate (ABA), an identified natural farnesoid X receptor (FXR) agonist from the well-known traditional Chinese medicine Alismatis rhizoma, protects against ischemic acute kidney injury (AKI) in an FXR-dependent manner, as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative stress, and suppressed inflammatory factor expression. Therefore, ABA may have great potential as a novel therapeutic agent in the treatment of AKI in the future.


Subject(s)
Acute Kidney Injury/prevention & control , Cholestenones/pharmacology , Drugs, Chinese Herbal/pharmacology , Kidney/drug effects , Receptors, Cytoplasmic and Nuclear/agonists , Reperfusion Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Disease Models, Animal , HEK293 Cells , Hep G2 Cells , Humans , Inflammation Mediators/metabolism , Kidney/metabolism , Kidney/pathology , Ligands , Male , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction
6.
Exp Cell Res ; 390(1): 111949, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32145254

ABSTRACT

Farnesoid X receptor (FXR) is a metabolic nuclear receptor, which protects liver from many endogenous and exogenous injuries. Metallothioneins (MTs) belong to a low-molecular-weight protein family involved in metal homeostasis and the regulation of hepatic oxidative stress. In the present study, we aimed to investigate the effect of FXR on hepatic MT1 expression and the underlying mechanism. C57BL/6 mice or primary cultured mouse hepatocytes were treated with the synthetic FXR ligand GW4064 or natural ligand CDCA. RNA-Sequencing (RNA-seq) analysis was performed to identify gene expression profile in the livers of mice treated with GW4064. Real-time PCR and Western blot were applied to determine the expression of MT1 and other FXR target genes in the livers of mice and primary hepatocytes treated with GW4064 and CDCA. Cellular and subcellular locations of MT1 in the livers of mice treated with GW4064 were examined using immunohistochemistry assay. FXR small interfering RNAs (siRNA) was transfected to silence FXR. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to confirm the regulation of MT1 gene promoter activity by FXR. RNA-seq analysis revealed that GW4064 treatment significantly induced MT1 expression in mouse liver. Consistently, MT1 expression in the hepatocytes of mouse livers and cultured hepatocytes was upregulated by GW4064 as well as CDCA. In addition, adenovirus-mediated overexpression of FXR markedly increased, while siRNA-mediated FXR silencing significantly suppressed MT1 expression in cultured hepatocytes. Luciferase reporter and ChIP assays further confirmed that the MT1 gene was under the direct control of FXR. Collectively, our findings demonstrate that MT1 is a novel target gene of FXR and may contribute to antioxidative capacity of FXR in liver diseases.


Subject(s)
Liver/metabolism , Metallothionein/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cells, Cultured , Hepatocytes/metabolism , Humans , Male , Metallothionein/metabolism , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/genetics
7.
Proc Natl Acad Sci U S A ; 115(21): 5600-5605, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29739889

ABSTRACT

Hypertonicity in renal medulla is critical for the kidney to produce concentrated urine. Renal medullary cells have to survive high medullary osmolarity during antidiuresis. Previous study reported that farnesoid X receptor (FXR), a nuclear receptor transcription factor activated by endogenous bile acids, increases urine concentrating ability by up-regulating aquaporin 2 expression in medullary collecting duct cells (MCDs). However, whether FXR is also involved in the maintenance of cell survival of MCDs under dehydration condition and hypertonic stress remains largely unknown. In the present study, we demonstrate that 24-hours water restriction selectively up-regulated renal medullary expression of FXR with little MCD apoptosis in wild-type mice. In contrast, water deprivation caused a massive apoptosis of MCDs in both global FXR gene-deficient mice and collecting duct-specific FXR knockout mice. In vitro studies showed that hypertonicity significantly increased FXR and tonicity response enhancer binding protein (TonEBP) expression in mIMCD3 cell line and primary cultured MCDs. Activation and overexpression of FXR markedly increased cell viability and decreased cell apoptosis under hyperosmotic conditions. In addition, FXR can increase gene expression and nuclear translocation of TonEBP. We conclude that FXR protects MCDs from hypertonicity-induced cell injury very likely via increasing TonEBP expression and nuclear translocation. This study provides insights into the molecular mechanism by which FXR enhances urine concentration via maintaining cell viability of MCDs under hyperosmotic condition.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Medulla/cytology , Kidney Tubules, Collecting/cytology , Osmotic Pressure/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Stress, Physiological , Transcription Factors/metabolism , Animals , Gene Expression Regulation , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics
8.
Sheng Li Xue Bao ; 73(5): 795-804, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34708236

ABSTRACT

Farnesoid X receptor (FXR) has been identified as an inhibitor of platelet function and an inducer of fibrinogen protein complex. However, the regulatory mechanism of FXR in hemostatic system remains incompletely understood. In this study, we aimed to investigate the functions of FXR in regulating antithrombin III (AT III). C57BL/6 mice and FXR knockout (FXR KO) mice were treated with or without GW4064 (30 mg/kg per day). FXR activation significantly prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), lowered activity of activated factor X (FXa) and concentrations of thrombin-antithrombin complex (TAT) and activated factor II (FIIa), and increased level of AT III, whereas all of these effects were markedly reversed in FXR KO mice. In vivo, hepatic AT III mRNA and protein expression levels were up-regulated in wild-type mice after FXR activation, but down-regulated in FXR KO mice. In vitro study showed that FXR activation induced, while FXR knockdown inhibited, AT III expression in mouse primary hepatocytes. The luciferase assay and ChIP assay revealed that FXR can bind to the promoter region of AT III gene where FXR activation increased AT III transcription. These results suggest FXR activation inhibits coagulation process via inducing hepatic AT III expression in mice. The present study reveals a new role of FXR in hemostatic homeostasis and indicates that FXR might act as a potential therapeutic target for diseases related to hypercoagulation.


Subject(s)
Antithrombin III , Hepatocytes , Receptors, Cytoplasmic and Nuclear , Animals , Blood Coagulation , Liver , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/genetics
9.
Pflugers Arch ; 472(11): 1631-1641, 2020 11.
Article in English | MEDLINE | ID: mdl-32914211

ABSTRACT

Crystallin zeta (CRYZ) is a phylogenetically restricted water-soluble protein and provides cytoprotection against oxidative stress via multiple mechanisms. Increasing evidence suggests that CRYZ is high abundantly expressed in the kidney where it acts as a transacting factor in increasing glutaminolysis and the Na+/K+/2Cl- cotransporter (BSC1/NKCC2) expression to help maintain acid-base balance and medullary hyperosmotic gradient. However, the mechanism by which CRYZ is regulated in the kidney remains largely uncharacterized. Here, we show that CRYZ is a direct target of farnesoid X receptor (FXR), a nuclear receptor important for renal physiology. We found that CRYZ was ubiquitously expressed in mouse kidney and constitutively expressed in the cytoplasm of medullary collecting duct cells (MCDs). In primary cultured mouse MCDs, CRYZ expression was significantly upregulated by the activation and overexpression of FXR. FXR-induced CRYZ expression was almost completely abolished in the MCD cells with siRNA-mediated FXR knockdown. Consistently, treatment with FXR agonists failed to induce CRYZ expression in the MCDs isolated from mice with global and collecting duct-specific FXR deficiency. We identified a putative FXR response element (FXRE) on the CRYZ gene promoter. The luciferase reporter and ChIP assays revealed that FXR can bind directly to the FXRE site, which was further markedly enhanced by FXR activation. Furthermore, we found CRYZ overexpression in MCDs significantly attenuated hypertonicity-induced cell death possibly via increasing Bcl-2 expression. Collectively, our findings demonstrate that CRYZ is constitutively expressed in renal medullary collecting duct cells, where it is transcriptionally controlled by FXR. Given a critical role of FXR in MCDs, CRYZ may be responsible for protective effect of FXR on the survival of MCDs under hypertonic condition during dehydration.


Subject(s)
Kidney Tubules, Collecting/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , zeta-Crystallins/genetics , Animals , Cells, Cultured , Cytoplasm/metabolism , Kidney Tubules, Collecting/cytology , Male , Mice , Mice, Inbred C57BL , Osmotic Pressure , Receptors, Cytoplasmic and Nuclear/genetics , Response Elements , zeta-Crystallins/metabolism
10.
Bioorg Chem ; 104: 104325, 2020 11.
Article in English | MEDLINE | ID: mdl-33254425

ABSTRACT

Evolides A (1) and B (2) were isolated from the fruits of Evodia rutaecarpa and characterized by various spectroscopic data analyses (NMR, HRESIMS, ECD, and X-ray crystallography) and were thought to be new unusual terpenoids possessing lactone groups. An in vitro bioassay showed that compound 1 exhibited a significant activation effect on the farnesoid X receptor (EC50 0.73 µM).


Subject(s)
Evodia/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Terpenes/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/isolation & purification
11.
Bioorg Chem ; 102: 104065, 2020 09.
Article in English | MEDLINE | ID: mdl-32663670

ABSTRACT

Pulmonary fibrosis is a progressive, irreversible, and fatal fibrotic lung disease with a high mortality and morbidity, and commonly nonresponsive to conventional therapy. Inula japonica Thunb. is a traditional Chinese medicine, known as "Xuan Fu Hua" in Chinese, and has been widely applied to relieve cough and dyspnea and eliminate retained phlegm with a long history. In this study, we aimed to evaluate the anti-fibrosis effect and action mechanism of I. japonica extract (IJE) for the treatment of bleomycin (BLM)-induced pulmonary fibrosis in mice. IJE treatment significantly restored BLM-induced alterations in body weight loss and lung function decline, decreased the collagen deposition induced by BLM in lung tissues, and inhibited fibrotic and inflammatory factors, such as α-SMA, TGF-ß1, TNF-α, IL-6, COX-2, NF-κB, and GSK3ß, in a dose-dependent manner. We found that IJE could enhance the concentration of 8,9-epoxyeicosatrienoic acid (8,9-EET) and decrease concentrations of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET), 11,12-DHET, and 14,15-DHET in BLM-induced mice. Meanwhile, IJE suppressed protein and mRNA expression levels of soluble epoxide hydrolase (sEH), and significantly displayed the inhibition of sEH activity with an IC50 value of 0.98 µg/mL. Our results indicated that IJE exerted remarkable anti-fibrosis effect on BLM-induced pulmonary fibrosis in mice via inhibiting sEH activity, resulting in the regulation of GSK3ß signaling pathway. Our findings revealed the underlying action mechanism of I. japonica, and suggested that I. japonica could be regarded as a candidate resource for the treatment of pulmonary fibrosis.


Subject(s)
Epoxide Hydrolases/antagonists & inhibitors , Inula/chemistry , Medicine, Chinese Traditional/methods , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin/adverse effects , Humans , Mice
12.
J Clin Lab Anal ; 34(8): e23306, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32207210

ABSTRACT

BACKGROUND: Diverse and circumstantial evidence suggests that schizophrenia is a neurodevelopmental disorder. Genes contributing to neurodevelopment may be potential candidates for schizophrenia. The human SOX11 gene is a member of the developmentally essential SOX (Sry-related HMG box) transcription factor gene family and mapped to chromosome 2p, a potential candidate region for schizophrenia. METHODS: Our previous genome-wide association study (GWAS) implicated an involvement of SOX11 with schizophrenia in a Chinese Han population. To further investigate the association between SOX11 polymorphisms and schizophrenia, we performed an independent replication case-control association study in a sample including 768 cases and 1348 controls. RESULTS: After Bonferroni correction, four SNPs in SOX11 distal 3'UTR significantly associated with schizophrenia in the allele frequencies: rs16864067 (allelic P = .0022), rs12478711 (allelic P = .0009), rs2564045 (allelic P = .0027), and rs2252087 (allelic P = .0025). The haplotype analysis of the selected SNPs showed different haplotype frequencies for two blocks (rs4371338-rs7596062-rs16864067-rs12478711 and rs2564045-rs2252087-rs2564055-rs1366733) between cases and controls. Further luciferase assay and electrophoretic mobility shift assay (EMSA) revealed the schizophrenia-associated SOX11 SNPs may influence SOX11 gene expression, and the risk and non-risk alleles may have different affinity to certain transcription factors and can recruit divergent factors. CONCLUSIONS: Our results suggest SOX11 as a susceptibility gene for schizophrenia, and SOX11 polymorphisms and haplotypes in the distal 3'UTR of the gene might modulate transcriptional activity by serving as cis-regulatory elements and recruiting transcriptional activators or repressors. Also, these SNPs may potentiate as diagnostic markers for the disease.


Subject(s)
3' Untranslated Regions/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , SOXC Transcription Factors/genetics , Schizophrenia/genetics , Adolescent , Adult , Asian People/genetics , Case-Control Studies , Cell Line, Tumor , China , Female , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Young Adult
13.
J Nat Prod ; 82(12): 3302-3310, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31789520

ABSTRACT

Nine new monoterpenoid indole alkaloids, uncarialins A-I (1-9), were isolated from Uncaria rhynchophylla as well as 14 known analogues (10-23). Their structures were determined by HRESIMS, 1D and 2D NMR, and experimental and calculated electronic circular dichroism data. Compounds 5, 7, 15, and 22 displayed significant agonistic effects against the 5-HT1A receptor with EC50 values of 2.2 ± 0.1, 0.1 ± 0.1, 1.6 ± 0.3, and 2.0 ± 0.5 µM, respectively. The mechanisms of action of these four compounds with the 5-HT1A receptor were investigated by molecular docking, and the results suggested that amino acid residues Asp116, Thr196, Asn386, and Tyr390 played critical roles in the observed activity of the above-mentioned compounds.


Subject(s)
Receptor, Serotonin, 5-HT1A/drug effects , Secologanin Tryptamine Alkaloids/pharmacology , Serotonin Receptor Agonists/pharmacology , Uncaria/chemistry , Animals , CHO Cells , Cricetulus , Molecular Docking Simulation , Molecular Structure , Secologanin Tryptamine Alkaloids/chemistry , Secologanin Tryptamine Alkaloids/isolation & purification , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/isolation & purification , Spectrum Analysis/methods
14.
Molecules ; 24(2)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30634538

ABSTRACT

In recent years, metabolic disorder, especially fatty liver disease, has been considered a major challenge to global health. The attention of researchers focused on expanding knowledge of the regulation mechanism behind these diseases and towards the new diagnostics tools and treatments. The pathophysiology of the fatty liver disease is undoubtedly complex. Abnormal hepatic lipid accumulation is a major symptom of most metabolic diseases. Therefore, the identification of novel regulation factors of lipid metabolism is important and meaningful. As a new diagnostic tool, the function of microRNAs during fatty liver disease has recently come into notice in biological research. Accumulating evidence supports the influence of miRNAs in lipid metabolism. In this review, we discuss the potential role of miRNAs in liver lipid metabolism and the pathogenesis of fatty liver disease.


Subject(s)
Lipid Metabolism , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/diagnosis , Gene Expression Regulation , Gene Regulatory Networks , Humans , Liver/chemistry , Non-alcoholic Fatty Liver Disease/genetics
15.
Sheng Li Xue Bao ; 71(2): 311-318, 2019 Apr 25.
Article in Zh | MEDLINE | ID: mdl-31008491

ABSTRACT

As a member of the nuclear receptor superfamily, the pregnane X receptor (PXR) is a ligand-activated transcription factor. PXR is highly expressed in liver and intestinal tissues, and also found in other tissues and organs, such as stomach and kidney. After heterodimerization with retinoid X receptor (RXR), PXR recruits numerous co-activating factors, and binds to specific DNA response elements to perform transcriptional regulation of the downstream target genes. As an acknowledged receptor for xenobiotics, PXR was initially considered as a nuclear receptor regulating drug metabolizing enzymes and transporters. However, nowadays, PXR has also been recognized as an important endobiotic receptor. Recent studies have shown that PXR activation can regulate glucose metabolism, lipid metabolism, steroid endocrine homeostasis, detoxification of cholic acid and bilirubin, bone mineral balance, and immune inflammation in vivo. This review focuses on the role of PXR in metabolism of endogenous substances.


Subject(s)
Pregnane X Receptor/metabolism , Xenobiotics/metabolism , Animals , Gene Expression Regulation , Humans
16.
Bioorg Chem ; 79: 250-256, 2018 09.
Article in English | MEDLINE | ID: mdl-29775950

ABSTRACT

A novel 1(2), 2(18)-diseco indole diterpenoid, drechmerin H (1), was isolated from the fermentation broth of Drechmeria sp. together with a new indole diterpenoid, 2'-epi terpendole A (3), and a known analogue, terpendole A (2). Their structures were determined by HRESIMS, 1D and 2D NMR, ECD, and X-ray single crystal diffraction analyses as well as quantum chemical calculation. The abosulte configuration of terpendole A (2) was determined for the first time. Compound 1 displayed the significant agonistic effect on pregnane X receptor (PXR) with EC50 value of 134.91 ±â€¯2.01 nM, and its interaction with PXR was investigated by molecular docking. Meantime, a plausible biosynthetic pathway for compounds 1-3 is also discussed in the present work.


Subject(s)
Biological Products/pharmacology , Diterpenes/pharmacology , Hypocreales/chemistry , Indoles/pharmacology , Pregnane X Receptor/agonists , Biological Products/chemistry , Biological Products/isolation & purification , Diterpenes/chemistry , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Indoles/chemistry , Indoles/isolation & purification , Molecular Structure , Structure-Activity Relationship
17.
Mar Drugs ; 16(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563240

ABSTRACT

Ten new triterpenoid compounds with structure diversity of the C-17 side-chain, including nine tirucallanes, named xylocarpols A⁻E (1⁻5) and agallochols A⁻D (6⁻9), and an apotirucallane, named 25-dehydroxy protoxylogranatin B (10), were isolated from the mangrove plants Xylocarpus granatum, Xylocarpus moluccensis, and Excoecaria agallocha. The structures of these compounds were established by HR-ESIMS and extensive one-dimensional (1D) and two-dimensional (2D) NMR investigations. The absolute configurations of 1 and 2 were unequivocally determined by single-crystal X-ray diffraction analyses, conducted with Cu Kα radiation; whereas those of 4, 6⁻8 were assigned by a modified Mosher's method and the comparison of experimental electronic circular dichroism (ECD) spectra. Most notably, 5, 6, 7, and 9 displayed potent activation effects on farnesoid⁻X⁻receptor (FXR) at the concentration of 10.0 µM; 10 exhibited very significant agonistic effects on pregnane⁻X⁻receptor (PXR) at the concentration of 10.0 nM.


Subject(s)
Plant Extracts/pharmacology , Pregnane X Receptor/agonists , Receptors, Cytoplasmic and Nuclear/agonists , Triterpenes/pharmacology , Circular Dichroism , Crystallography, X-Ray , Euphorbiaceae/chemistry , Magnetic Resonance Spectroscopy , Meliaceae/chemistry , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Triterpenes/chemistry , Triterpenes/isolation & purification , Wetlands
20.
Biochem J ; 450(3): 459-68, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23301561

ABSTRACT

The transcription factor Sox2 [SRY (sex-determining region Y)-box 2] is essential for the regulation of self-renewal and homoeostasis of NSCs (neural stem cells) during brain development. However, the downstream targets of Sox2 and its underlying molecular mechanism are largely unknown. In the present study, we found that Sox2 directly up-regulates the expression of survivin, which inhibits the mitochondria-dependent apoptotic pathway in NSCs. Although overexpression of Sox2 elevates survivin expression, knockdown of Sox2 results in a decrease in survivin expression, thereby initiating the mitochondria-dependent apoptosis related to caspase 9 activation. Furthermore, cell apoptosis owing to knockdown of Sox2 can be rescued by ectopically expressing survivin in NSCs as well as in the mouse brain, as demonstrated by an in utero-injection approach. In short, we have found a novel Sox2/survivin pathway that regulates NSC survival and homoeostasis, thus revealing a new mechanism of brain development, neurological degeneration and such aging-related disorders.


Subject(s)
Apoptosis/genetics , Inhibitor of Apoptosis Proteins/genetics , Neural Stem Cells/physiology , Repressor Proteins/genetics , SOXB1 Transcription Factors/physiology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cells, Cultured , Cytoprotection/drug effects , Cytoprotection/genetics , Cytoprotection/physiology , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/drug effects , Inhibitor of Apoptosis Proteins/metabolism , Mice , Mice, Inbred ICR , Mice, Transgenic , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Neurogenesis/genetics , Neurogenesis/physiology , Pregnancy , RNA, Small Interfering/pharmacology , Repressor Proteins/metabolism , SOXB1 Transcription Factors/antagonists & inhibitors , SOXB1 Transcription Factors/genetics , Survivin , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL