Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 186(23): 5151-5164.e13, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37875109

ABSTRACT

The large-scale evolution of the SARS-CoV-2 virus has been marked by rapid turnover of genetic clades. New variants show intrinsic changes, notably increased transmissibility, and antigenic changes that reduce cross-immunity induced by previous infections or vaccinations. How this functional variation shapes global evolution has remained unclear. Here, we establish a predictive fitness model for SARS-CoV-2 that integrates antigenic and intrinsic selection. The model is informed by tracking of time-resolved sequence data, epidemiological records, and cross-neutralization data of viral variants. Our inference shows that immune pressure, including contributions of vaccinations and previous infections, has become the dominant force driving the recent evolution of SARS-CoV-2. The fitness model can serve continued surveillance in two ways. First, it successfully predicts the short-term evolution of circulating strains and flags emerging variants likely to displace the previously predominant variant. Second, it predicts likely antigenic profiles of successful escape variants prior to their emergence.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vaccination , Models, Genetic , Epidemiological Monitoring
2.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32559462

ABSTRACT

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Subject(s)
RNA Caps/genetics , RNA Virus Infections/genetics , Recombinant Fusion Proteins/genetics , 5' Untranslated Regions/genetics , Animals , Cattle , Cell Line , Cricetinae , Dogs , Humans , Influenza A virus/metabolism , Mice , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Open Reading Frames/genetics , RNA Caps/metabolism , RNA Virus Infections/metabolism , RNA Viruses/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Fusion Proteins/metabolism , Transcription, Genetic/genetics , Viral Proteins/metabolism , Virus Replication/genetics
3.
Nature ; 618(7963): 144-150, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37165196

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is lethal in 88% of patients1, yet harbours mutation-derived T cell neoantigens that are suitable for vaccines 2,3. Here in a phase I trial of adjuvant autogene cevumeran, an individualized neoantigen vaccine based on uridine mRNA-lipoplex nanoparticles, we synthesized mRNA neoantigen vaccines in real time from surgically resected PDAC tumours. After surgery, we sequentially administered atezolizumab (an anti-PD-L1 immunotherapy), autogene cevumeran (a maximum of 20 neoantigens per patient) and a modified version of a four-drug chemotherapy regimen (mFOLFIRINOX, comprising folinic acid, fluorouracil, irinotecan and oxaliplatin). The end points included vaccine-induced neoantigen-specific T cells by high-threshold assays, 18-month recurrence-free survival and oncologic feasibility. We treated 16 patients with atezolizumab and autogene cevumeran, then 15 patients with mFOLFIRINOX. Autogene cevumeran was administered within 3 days of benchmarked times, was tolerable and induced de novo high-magnitude neoantigen-specific T cells in 8 out of 16 patients, with half targeting more than one vaccine neoantigen. Using a new mathematical strategy to track T cell clones (CloneTrack) and functional assays, we found that vaccine-expanded T cells comprised up to 10% of all blood T cells, re-expanded with a vaccine booster and included long-lived polyfunctional neoantigen-specific effector CD8+ T cells. At 18-month median follow-up, patients with vaccine-expanded T cells (responders) had a longer median recurrence-free survival (not reached) compared with patients without vaccine-expanded T cells (non-responders; 13.4 months, P = 0.003). Differences in the immune fitness of the patients did not confound this correlation, as responders and non-responders mounted equivalent immunity to a concurrent unrelated mRNA vaccine against SARS-CoV-2. Thus, adjuvant atezolizumab, autogene cevumeran and mFOLFIRINOX induces substantial T cell activity that may correlate with delayed PDAC recurrence.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Carcinoma, Pancreatic Ductal , Lymphocyte Activation , Pancreatic Neoplasms , T-Lymphocytes , Humans , Adjuvants, Immunologic/therapeutic use , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy , Lymphocyte Activation/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , T-Lymphocytes/cytology , T-Lymphocytes/immunology , mRNA Vaccines
4.
Nature ; 606(7912): 172-179, 2022 06.
Article in English | MEDLINE | ID: mdl-35545680

ABSTRACT

Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3-6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.


Subject(s)
Carcinogenesis , Evolution, Molecular , Lung Neoplasms , Mutation , Carcinogenesis/genetics , Carcinogenesis/immunology , Datasets as Topic , Genes, p53 , Genetic Fitness , Genomics , Healthy Volunteers , Humans , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Mutation/genetics , Mutation, Missense , Reproducibility of Results
5.
Nature ; 606(7913): 389-395, 2022 06.
Article in English | MEDLINE | ID: mdl-35589842

ABSTRACT

Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness'  based on neoantigen similarity to known antigens4,5, and 'selfness'  based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer.


Subject(s)
Antigens, Neoplasm , Cancer Survivors , Pancreatic Neoplasms , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , T-Lymphocytes/immunology , Tumor Escape/immunology
6.
Nature ; 551(7681): 517-520, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29132144

ABSTRACT

Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma and anti-PD-1-treated patients with lung cancer. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens.


Subject(s)
Antigens, Neoplasm/immunology , Immunotherapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Melanoma/immunology , Melanoma/therapy , Models, Immunological , Antigen Presentation , Antigens, Neoplasm/genetics , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/immunology , Cohort Studies , Evolution, Molecular , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lymphocyte Activation , Melanoma/genetics , Melanoma/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Survival Analysis , T-Lymphocytes/immunology
8.
Nature ; 551(7681): 512-516, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29132146

ABSTRACT

Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Bacterial Proteins/immunology , Cancer Survivors , Cross Reactions/immunology , Pancreatic Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Adenocarcinoma/blood , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Antigens, Neoplasm/genetics , Bacterial Proteins/blood , Bacterial Proteins/genetics , CA-125 Antigen/genetics , CA-125 Antigen/immunology , Computer Simulation , Cross Reactions/genetics , Humans , Immunotherapy , Membrane Proteins/genetics , Membrane Proteins/immunology , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Prognosis , Survival Analysis , T-Lymphocytes, Cytotoxic/cytology , Exome Sequencing
9.
Clin Infect Dis ; 75(1): e774-e782, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34644393

ABSTRACT

BACKGROUND: Vaccine-induced clinical protection against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) variants is an evolving target. There are limited genomic level data on SARS CoV-2 breakthrough infections and vaccine effectiveness (VE) since the global spread of the B.1.617.2 (Delta) variant. METHODS: In a retrospective study from 1 November 2020 to 31 August 2021, divided as pre-Delta and Delta-dominant periods, laboratory-confirmed SARS CoV-2 infections among healthcare personnel (HCP) at a large tertiary cancer center in New York City were examined to compare the weekly infection rate-ratio in vaccinated, partially vaccinated, and unvaccinated HCP. We describe the clinical and genomic epidemiologic features of post-vaccine infections to assess for selection of variants of concern (VOC)/variants of interest (VOI) in the early post-vaccine period and impact of B.1.617.2 (Delta) variant domination on VE. RESULTS: Among 13658 HCP in our cohort, 12379 received at least 1 dose of a messenger RNA (mRNA) vaccine. In the pre-Delta period overall VE was 94.5%. Whole genome sequencing (WGS) of 369 isolates in the pre-Delta period did not reveal a clade bias for VOC/VOI specific to post-vaccine infections. VE in the Delta dominant phase was 75.6%. No hospitalizations occurred among vaccinated HCP in the entire study period, compared to 17 hospitalizations and 1 death among unvaccinated HCP. CONCLUSIONS: Findings show high VE among HCP in New York City in the pre-Delta phase, with moderate decline in VE post-Delta emergence. SARS CoV-2 clades were similarly distributed among vaccinated and unvaccinated infected HCP without apparent clustering during the pre-Delta period of diverse clade circulation. Strong vaccine protection against hospitalization was maintained through the entire study period.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Delivery of Health Care , Genomics , Humans , New York City/epidemiology , RNA, Messenger , Retrospective Studies , SARS-CoV-2/genetics
10.
Mol Biol Evol ; 36(10): 2184-2194, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31209469

ABSTRACT

During chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host's adaptive immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the characteristics of the somatic evolution that shape the immune response are still unknown. Traditional population genetics methods fail to distinguish chronic immune response from healthy repertoire evolution. Here, we infer the evolutionary modes of B-cell repertoires and identify complex dynamics with a constant production of better B-cell receptor (BCR) mutants that compete, maintaining large clonal diversity and potentially slowing down adaptation. A substantial fraction of mutations that rise to high frequencies in pathogen-engaging CDRs of BCRs are beneficial, in contrast to many such changes in structurally relevant frameworks that are deleterious and circulate by hitchhiking. We identify a pattern where BCRs in patients who experience larger viral expansions undergo stronger selection with a rapid turnover of beneficial mutations due to clonal interference in their CDR3 regions. Using population genetics modeling, we show that the extinction of these beneficial mutations can be attributed to the rise of competing beneficial alleles and clonal interference. The picture is of a dynamic repertoire, where better clones may be outcompeted by new mutants before they fix.


Subject(s)
Adaptive Immunity , HIV Infections/immunology , HIV-1/immunology , Receptors, Antigen, B-Cell/genetics , Selection, Genetic , Humans
11.
Nature ; 507(7490): 57-61, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24572367

ABSTRACT

The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin. Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.


Subject(s)
Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/immunology , Influenza, Human/virology , Computer Simulation , Epitopes/genetics , Epitopes/immunology , Genes, Viral/genetics , Genetic Fitness/genetics , Genetic Fitness/immunology , Genetic Fitness/physiology , Genetics, Population , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/genetics , Influenza, Human/epidemiology , Influenza, Human/immunology , Models, Immunological , Mutation/genetics , Time Factors
12.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746108

ABSTRACT

The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to one year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available on the website previr.app .

13.
ArXiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38745695

ABSTRACT

The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to one year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available on the website previr.app.

14.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38215748

ABSTRACT

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Signal Transduction , Immunotherapy , Antigen Presentation , B7-H1 Antigen/metabolism , Tumor Microenvironment
15.
Nat Genet ; 55(5): 807-819, 2023 05.
Article in English | MEDLINE | ID: mdl-37024582

ABSTRACT

Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-small cell lung cancer (NSCLC). To expand our understanding of the molecular features underlying response to checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up To Cancer-Mark Foundation cohort, a resource of whole exome and/or RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, along with matched clinical response annotation. We identify a number of associations between molecular features and outcome, including (1) favorable (for example, ATM altered) and unfavorable (for example, TERT amplified) genomic subgroups, (2) a prominent association between expression of inducible components of the immunoproteasome and response and (3) a dedifferentiated tumor-intrinsic subtype with enhanced response to checkpoint blockade. Taken together, results from this cohort demonstrate the complexity of biological determinants underlying immunotherapy outcomes and reinforce the discovery potential of integrative analysis within large, well-curated, cancer-specific cohorts.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Transcriptome/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/therapeutic use , Genomics
16.
Virologie (Montrouge) ; 21(1): 5-8, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-31967567
17.
Nat Commun ; 13(1): 7864, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543789

ABSTRACT

Contemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo.


Subject(s)
Antibodies, Monoclonal , Influenza A Virus, H3N2 Subtype , Neuraminidase , Humans , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Catalytic Domain/immunology , Catalytic Domain/physiology , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/immunology , Influenza, Human/metabolism , Neuraminidase/chemistry , Neuraminidase/immunology
18.
Cell Host Microbe ; 30(1): 69-82.e10, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34973165

ABSTRACT

A fraction of COVID-19 convalescent individuals mount a potent antibody response to SARS-CoV-2 with cross-reactivity to SARS-CoV-1. To uncover their humoral response in detail, we performed single B cell analysis from 10 SARS-CoV-2 elite neutralizers. We isolated and analyzed 126 monoclonal antibodies, many of which were sarbecovirus cross-reactive, with some displaying merbecovirus- and embecovirus-reactivity. Several isolated broadly neutralizing antibodies were effective against B.1.1.7, B.1.351, B.1.429, B.1.617, and B.1.617.2 variants and 19 prominent potential escape sites. Furthermore, assembly of 716,806 SARS-CoV-2 sequences predicted emerging escape variants, which were also effectively neutralized. One of these broadly neutralizing potent antibodies, R40-1G8, is a IGHV3-53 RBD-class-1 antibody. Remarkably, cryo-EM analysis revealed that R40-1G8 has a flexible binding mode, targeting both "up" and "down" conformations of the RBD. Given the threat of emerging SARS-CoV-2 variants, we demonstrate that elite neutralizers are a valuable source for isolating ultrapotent antibody candidates to prevent and treat SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Cross Reactions/immunology , Female , HEK293 Cells , Humans , Male , Middle Aged , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
19.
Nat Commun ; 12(1): 3463, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103497

ABSTRACT

Numerous reports document the spread of SARS-CoV-2, but there is limited information on its introduction before the identification of a local case. This may lead to incorrect assumptions when modeling viral origins and transmission. Here, we utilize a sample pooling strategy to screen for previously undetected SARS-CoV-2 in de-identified, respiratory pathogen-negative nasopharyngeal specimens from 3,040 patients across the Mount Sinai Health System in New York. The patients had been previously evaluated for respiratory symptoms or influenza-like illness during the first 10 weeks of 2020. We identify SARS-CoV-2 RNA from specimens collected as early as 25 January 2020, and complete SARS-CoV-2 genome sequences from multiple pools of samples collected between late February and early March, documenting an increase prior to the later surge. Our results provide evidence of sporadic SARS-CoV-2 infections a full month before both the first officially documented case and emergence of New York as a COVID-19 epicenter in March 2020.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/physiology , Humans , Nasopharynx/virology , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
20.
Phys Rev Lett ; 105(22): 220601, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21231375

ABSTRACT

This Letter addresses the statistical significance of structures in random data: given a set of vectors and a measure of mutual similarity, how likely is it that a subset of these vectors forms a cluster with enhanced similarity among its elements? The computation of this cluster p value for randomly distributed vectors is mapped onto a well-defined problem of statistical mechanics. We solve this problem analytically, establishing a connection between the physics of quenched disorder and multiple-testing statistics in clustering and related problems. In an application to gene expression data, we find a remarkable link between the statistical significance of a cluster and the functional relationships between its genes.

SELECTION OF CITATIONS
SEARCH DETAIL