Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Chem Biol ; 20(10): 1341-1352, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38720107

ABSTRACT

Whether stem-cell-like cancer cells avert ferroptosis to mediate therapy resistance remains unclear. In this study, using a soft fibrin gel culture system, we found that tumor-repopulating cells (TRCs) with stem-cell-like cancer cell characteristics resist chemotherapy and radiotherapy by decreasing ferroptosis sensitivity. Mechanistically, through quantitative mass spectrometry and lipidomic analysis, we determined that mitochondria metabolic kinase PCK2 phosphorylates and activates ACSL4 to drive ferroptosis-associated phospholipid remodeling. TRCs downregulate the PCK2 expression to confer themselves on a structural ferroptosis-resistant state. Notably, in addition to confirming the role of PCK2-pACSL4(T679) in multiple preclinical models, we discovered that higher PCK2 and pACSL4(T679) levels are correlated with better response to chemotherapy and radiotherapy as well as lower distant metastasis in nasopharyngeal carcinoma cohorts.


Subject(s)
Ferroptosis , Phospholipids , Humans , Phospholipids/metabolism , Animals , Cell Line, Tumor , Coenzyme A Ligases/metabolism , Mice , Phosphorylation , Drug Resistance, Neoplasm , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
2.
Oral Oncol ; 151: 106725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430711

ABSTRACT

BACKGROUND: Non-anatomical factors significantly affect treatment guidance and prognostic prediction in nasopharyngeal carcinoma (NPC) patients. Here, we developed a novel survival model by combining conventional TNM staging and serological indicators. METHODS: We retrospectively enrolled 10,914 eligible patients with nonmetastatic NPC over 2009-2017 and randomly divided them into training (n = 7672) and validation (n = 3242) cohorts. The new staging system was constructed based on T category, N category, and pretreatment serological markers by using recursive partitioning analysis (RPA). RESULTS: In multivariate Cox analysis, pretreatment cell-free Epstein-Barr virus (cfEBV) DNA levels of >2000 copies/mL [HROS (95 % CI) = 1.78 (1.57-2.02)], elevated lactate dehydrogenase (LDH) levels [HROS (95 % CI) = 1.64 (1.41-1.92)], and C-reactive protein-to-albumin ratio (CAR) of >0.04 [HROS (95 % CI) = 1.20 (1.07-1.34)] were associated with negative prognosis (all P < 0.05). Through RPA, we stratified patients into four risk groups: RPA I (n = 3209), RPA II (n = 2063), RPA III (n = 1263), and RPA IV (n = 1137), with 5-year overall survival (OS) rates of 93.2 %, 86.0 %, 80.6 %, and 71.9 % (all P < 0.001), respectively. Compared with the TNM staging system (eighth edition), RPA risk grouping demonstrated higher prognostic prediction efficacy in the training [area under the curve (AUC) = 0.661 vs. 0.631, P < 0.001] and validation (AUC = 0.687 vs. 0.654, P = 0.001) cohorts. Furthermore, our model could distinguish sensitive patients suitable for induction chemotherapy well. CONCLUSION: Our novel RPA staging model outperformed the current TNM staging system in prognostic prediction and clinical decision-making. We recommend incorporating cfEBV DNA, LDH, and CAR into the TNM staging system.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Neoplasm Staging , Nasopharyngeal Carcinoma/pathology , Retrospective Studies , Herpesvirus 4, Human/genetics , Prognosis , Nasopharyngeal Neoplasms/pathology , DNA
3.
Onco Targets Ther ; 12: 7685-7690, 2019.
Article in English | MEDLINE | ID: mdl-31571919

ABSTRACT

Phosphatidylethanolamine-binding protein 4 (PEBP4) has been found to be highly expressed in many tumors and to be closely related to the proliferation, differentiation, and metastasis of tumors. PEBP4 has also been found to be involved in many cancer-activated signaling pathways and to cause therapeutic resistance. In this study, we first reviewed the morphological structure and expression of PEBP4, then discussed the roles of PEBP4 in individualized treatment of some cancers, and finally explored the possibilities of cultivating PEBP4 as a therapeutic target.We also identified the main signaling pathways in which PEBP4 affects different cancers. It is here concluded that over-expression of PEBP4 can enhance the proliferation and metastasis of the cancer cells and the resistance to radiotherapy/chemotherapy in cancers.

SELECTION OF CITATIONS
SEARCH DETAIL