Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Acta Pharmacol Sin ; 43(2): 417-428, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33833406

ABSTRACT

Oxidative stress-related cartilage degeneration, synovitis, and joint pain play vital roles in the progress of osteoarthritis (OA). Anti-oxidative stress agents not only prevent structural damage progression but also relieve OA-related pain. In this study, we investigated the therapeutic effect of methylene blue (MB), a classical and important anti-oxidant with strong neural affinity. Experimental OA was established in rats by radial transection of medial collateral ligament and medial meniscus (MCLT + MMT) of the right knee joint. The OA rats received intra-articular injection of MB (1 mg/kg) every week starting one week after surgery. We showed that MB administration exerted significant cartilage protection, synovitis inhibition as well as pain relief in OA rats. In human chondrocytes and fibroblast-like synoviocytes, MB significantly attenuated tert-butyl hydroperoxide (TBHP)-induced inflammatory response and oxidative stress. We demonstrated that these effects of MB resulted from dual targets of important antioxidant enzymes, Nrf2 and PRDX1, which also mutually reinforcing and participated in an interaction. Furthermore, we found that calcitonin gene-related peptide (CGRP), a neural inflammatory mediator, was accumulated around the vessel in synovium and subchondral bone in OA rats and in TBHP-treated primary cortical neurons; MB administration significantly inhibited CGRP expression through upregulation of Nrf2 and PRDX1. Taken together, these results suggest that MB ameliorates oxidative stress via Nrf2/PRDX1 regulation to prevent progression and relieve pain of OA.


Subject(s)
Arthralgia/drug therapy , Methylene Blue/therapeutic use , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Peroxiredoxins/metabolism , Animals , Blotting, Western , Disease Progression , Humans , Male , Osteoarthritis/pathology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Stifle/diagnostic imaging , Stifle/pathology , Up-Regulation , X-Ray Microtomography
2.
Acta Pharmacol Sin ; 43(7): 1793-1802, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34754093

ABSTRACT

Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects. We showed that CDDO-Im (20 nM) significantly alleviated TNF-α-induced apoptosis of primary human chondrocytes and extracellular matrix degradation. In a mouse OA model incurred by DMM (destabilization of medial meniscus), administration of CDDO-Im (2.5 mg/kg, ip, every other day for 8 weeks) effectively reduced knee joint cartilage erosion and serum levels of inflammatory cytokines IL-1ß and IL-6. We revealed that CDDO-Im (20 nM) significantly enhanced autophagy activities in chondrocytes, whereas the autophagy inhibition by chloroquine (CQ, 50 µM) or 3-methyladenine (3-MA, 5 mM) abrogated the anti-apoptosis and chondroprotective effects of CDDO-Im in TNF-α-treated chondrocytes. Moreover, we confirmed that CDDO-Im (1-20 nM) dose-dependently activated Nrf2 pathway in TNF-α-treated chondrocytes, and its chondroprotective and autophagy-enhancing effects were significantly diminished when Nrf2 signaling was blocked by Nrf2 inhibitor ML385 (20 µM) or siRNA-mediated Nrf2 knockdown. Together, our results demonstrate that CDDO-Im exhibits prominent chondroprotective and anti-OA activities owing to its Nrf2 activation and autophagy-enhancing properties, which might provide new insights into the strategies of OA clinical prevention and treatment.


Subject(s)
NF-E2-Related Factor 2 , Osteoarthritis , Animals , Mice , Autophagy , Chondrocytes , Imidazoles/pharmacology , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/analogs & derivatives , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL