Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Dairy Sci ; 105(6): 4783-4790, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35450713

ABSTRACT

Cynomorium songaricum is a traditional medicine and also a food material that is eaten raw or processed as tea or beverages. As a featured plant in semi-desert grasslands, C. songaricum is also eaten by the cattle and sheep in the area. This research study fed dairy sheep C. songaricum to determine the flavan-3-ols in sheep milk. Catechin (Cat), epicatechin (Epi), procyanidin A1 (A1), procyanidin A2 (A2), and procyanidin B1 (B1) were detected in sheep milk with the concentration being Epi > A2 > Cat > B1 > A1 at 24 h after the administration of C. songaricum. Neither A1 nor A2 were detected in the methanol extract of C. songaricum. Cysteine degradation of the plant revealed that in addition to Epi, A2 was the extending unit of the polymeric flavan-3-ols in C. songaricum, indicating that A2 is released digestively from the polymers and enters the milk. Procyanidin B-1 was converted to A1 on incubation in raw but not heated milk, indicating that the A1 in milk is the enzymatically transformed product of B1. Accelerated oxidation showed that the flavan-3-ols, B1, Cat, and Epi significantly protects the unsaturated triacyglycerols in the milk from oxidation. The flavan-3-ol could slow down the oxidation of glutathione and the latter may play an important role in preventing the milk triglycerides from oxidation. Flavan-3-ols are polyphenols with many health benefits. The present research revealed the antioxidant activities of flavan-3-ols that could be absorbed to sheep milk, adding new evidences for the values of these flavan-3-ols and for the milk.


Subject(s)
Catechin , Cynomorium , Animals , Antioxidants , Catechin/analysis , Cattle , Flavonoids , Milk/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Sheep
2.
J Dairy Sci ; 104(1): 391-396, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33189295

ABSTRACT

Mammalian lignans are phytoestrogens with important bioactivities, and their concentrations in livestock milk may influence the health of consumers. This research aimed to establish a method to quantify multiple mammalian lignans in the biofluids of dairy sheep using ultra-HPLC-triple quadropole mass spectrometry with multiple-reaction monitoring. Secoisolariciresinol, 2-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-hydroxyphenyl)methyl]-1,4-butanediol, enterodiol (ED), enterolactone (EL), ED-sulfate (ED-S), and EL-sulfate (EL-S) were purified from the urine of flaxseed cake-fed dairy sheep. The structures of these lignans were identified by a combination of mass and nuclear magnetic resonance spectra. These purified lignans were used as standards to optimize their quantification conditions in urine, milk, and plasma of dairy sheep. On this basis, the lignan metabolites in biofluids were quantified. To improve analysis sensitivity, plasma and milk were pretreated with acetonitrile containing 1% formic acid and passed through a HybridSPE-PL 55261-U column (Supelco, Bellefonte, PA). The limit of quantification of the lignans ranged from 1.43 to 18.3 ng/mL in plasma, and from 1.01 to 18.7 ng/mL in milk. The linearity of the calibration curves ranged from their limit of quantification to at least 217 ng/mL in plasma, and 217 ng/mL in milk. Regression coefficient of the calibration curves were above 0.99 for secoisolariciresinol, 2-[(4-hydroxy-3-methoxyphenyl)methyl]-3-[(3-hydroxyphenyl)methyl]-1,4-butanediol, ED, EL, ED-S, and EL-S, indicating satisfactory relationships between the peak areas and concentrations in the quantification range. The relative concentrations of ED-glucuronide and EL-glucuronide (EL-G) in different biofluids were compared based on their chromatogram peak areas. The sheep plasma contained all forms of mammalian lignans (i.e., ED, EL, ED-S, EL-S, ED-glucuronide, and EL-G.); the urine contained ED, EL, ED-S, and EL-S; and the milk contained ED, EL, ED-S, EL-S, and EL-G. Milk-to-plasma concentration ratios of the mammalian lignans indicated that the free forms were more permeable than the sulfated conjugates. Mammalian lignans found in sheep plasma and milk may provide health benefits to the sheep and sheep-product consumers. The analytical method established in this work could be used to quantify mammalian lignans in livestock products.


Subject(s)
Animal Feed , Flax , Lignans/analysis , Milk/chemistry , Sheep , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Animals , Butylene Glycols/metabolism , Flax/chemistry , Glucosides/analysis , Lignans/blood , Lignans/metabolism , Lignans/urine , Seeds/chemistry
3.
J Nat Prod ; 82(10): 2707-2712, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31593459

ABSTRACT

Tetraena mongolica Maxim, a relict originating from the Tertiary Period, is an endemic species of Zygophyllaceae in China. Three new monoterpenoids (1-3), two new phenols (4, 5) with unusual O-sulfoglucosyl groups, a new flavonoid (6), and nine known compounds were isolated from the leaves of T. mongolica. The structures of these compounds were determined by interpretation of NMR, MS, and ECD data. Some of the isolated compounds showed protective effects on HEK 293t cells damaged by CdCl2, with IC50 values being 55.7 and 80.3 µM for compounds 7 and 8, respectively, at the time point of 48 h after treatment.


Subject(s)
Cadmium Chloride/toxicity , Cytoprotection , Monoterpenes/isolation & purification , Zygophyllaceae/chemistry , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , HEK293 Cells , Humans , Monoterpenes/chemistry , Monoterpenes/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Plant Leaves/chemistry
4.
Molecules ; 21(6)2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27338318

ABSTRACT

Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.


Subject(s)
Amides/chemistry , Antioxidants/chemistry , Chlorogenic Acid/therapeutic use , Oxidative Stress/drug effects , Amides/chemical synthesis , Amides/therapeutic use , Antioxidants/chemical synthesis , Antioxidants/therapeutic use , Caffeic Acids/chemistry , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/chemical synthesis , Chlorogenic Acid/chemistry , Esters/chemistry , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , tert-Butylhydroperoxide/chemistry
5.
J Asian Nat Prod Res ; 17(11): 1079-90, 2015.
Article in English | MEDLINE | ID: mdl-26456550

ABSTRACT

Four types of piscidinol A derivatives were synthesized and evaluated their ability to inhibit HIV-1 protease to understand their structure-activity relationships. Of these tirucallane-type triterpene derivatives, an A-seco derivative (1b) moderately inhibited human immunodeficiency virus (HIV) protease (IC50 38.2 µM). The 2,2-dimethyl succinic acid (DMS) acylated tirucallane derivatives (4b, 6a, and 7b, 50 < IC50 < 100 µM) were more inhibitory against HIV-1 PR than the others (PA, 2a, 4a, 4c-4d, 5a, 6b-6d, and 7a, IC50 > 100 µM). These findings indicated that the 2,3-seco-2,3-dioic acid (1b) and DMS-acylated tirucallane-type derivatives preferably inhibited HIV viral protease.


Subject(s)
Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , HIV Protease/drug effects , HIV-1/drug effects , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Anti-HIV Agents/chemistry , HIV-1/enzymology , Humans , Molecular Structure , Structure-Activity Relationship , Triterpenes/chemistry
6.
J Food Sci ; 89(6): 3183-3193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767932

ABSTRACT

The stems of Cynomorium songaricum are used in traditional Chinese medicine as a tonic and also used locally as a food material and livestock feed. It is known that some of the falvan-3-ol monomers and dimers that entered the milk of dairy sheep fed with C. songaricum stems are biotransformation products of the original flavan-3-ol polymers in C. songaricum stems. This study was performed to investigate the biotransformation process of the flavan-3-ols in dairy sheep and to evaluate the bioactivities. The results showed that procyanidin A2 and epicatechin could be released from the polymeric flavan-3-ols of C. songaricum through rumen microbial metabolism. On traumatic and lipopolysaccharide (LPS)-induced inflammation models of Tg (mpx: EGFP) zebrafish larvae and LPS-induced liver injury models of Tg (fabp10a: DsRed) zebrafish larvae, the milk from sheep fed with C. songaricum stems showed stronger anti-inflammatory and hepatoprotective activities compared to blank milk. The absorbed chemical constituents of C. songaricum stems and the metabolites also exhibited anti-inflammatory and hepatoprotective activities, with the dimeric flavan-3-ols being more effective than the monomers. The milk, the absorbed chemical constituents of C. songaricum stems, and the metabolites alleviated the increased level of reactive oxygen species induced by LPS in zebrafish larvae. PRACTICAL APPLICATION: This study found that C. songaricum stems as livestock feed could produce milk that has a beneficial impact on consumer and livestock health in terms of anti-inflammation and hepatoprotection.


Subject(s)
Animal Feed , Biotransformation , Flavonoids , Liver , Zebrafish , Animals , Flavonoids/pharmacology , Flavonoids/metabolism , Sheep , Liver/metabolism , Liver/drug effects , Animal Feed/analysis , Inflammation/metabolism , Milk/chemistry , Proanthocyanidins/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Female , Rumen/metabolism , Plant Stems/chemistry
7.
Nat Prod Res ; : 1-6, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38511431

ABSTRACT

The previously undescribed lactone ring-opening enterolactone and its sulphate were purified along with the lactone counterparts from the urine of dairy sheep fed flaxseed cake. The structures were determined by NMR and MS analyses. The ring-opening and lactone forms underwent mutual transformation with changes in pH and milk could protect the lactone form. Enterolactone exhibited more effective anti-proliferation activity on MDA-MB-231 breast cancer cells than its ring-opening counterpart, while the ring-opening enterolactone demonstrated more effective anti-osteoporosis activity than the lactone form. The results indicated the potential for targeting biological functions through pH and medium manipulation.

8.
Biol Pharm Bull ; 36(5): 748-53, 2013.
Article in English | MEDLINE | ID: mdl-23649334

ABSTRACT

Baicalin (BG) and its aglycone, baicalein (B) are strong antioxidants that exert various pharmacological actions and show unique metabolic fates in the rat. The aim of the present study was to identify major metabolite(s) besides BG in rat plasma after oral administration of BG or B. The main metabolite was detected by HPLC equipped with an electrochemical detector at a potential of +500 mV and identified as baicalein 6-O-ß-D-glucopyranuronoside (B6G) by HPLC/MS/MS. When BG at a dose of 20 mg/kg was administered orally to Wistar rats, the level of B6G in plasma was higher than that of BG. Cmax and the area under the concentration-curve from 0 to 24 h (AUC0-24 h) values of the plasma B6G were 1.66 ± 0.34 µM and 19.8 3.9 ± µM · h, respectively, whereas those of BG were 0.853 ± 0.065 µM and 10.0 ± 3.1 µM · h, respectively. When B was administered, similar results were also obtained. B6G-producing activities from B were found in microsomes of both rat jejunum and liver, in spite of the low activity. Rat everted jejunal sacs formed B6G after application of B, but only in a small amount that was excreted into the mucosal side, and not the serosal side, indicating little contribution to the appearance of B6G in plasma. On the other hand, when B was injected into the rat portal vein, B6G was detected at a higher level than BG in the systemic circulation, demonstrating the hepatic contribution to the appearance of plasma B6G.


Subject(s)
Flavanones/pharmacokinetics , Flavonoids/metabolism , Flavonoids/pharmacokinetics , Glucuronates/metabolism , Administration, Oral , Animals , Flavanones/blood , Flavonoids/blood , Jejunum/metabolism , Male , Microsomes, Liver/metabolism , Rats , Rats, Wistar , Scutellaria baicalensis
9.
J Food Sci ; 88(12): 5278-5290, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37889085

ABSTRACT

Secoisolariciresinol diglucoside (SDG) and tracheloside (TCL) are the main lignan components of flaxseed cake and safflower seed cake, which are by-products of oil extraction. Both SDG and TCL are metabolized into mammalian lignan enterolactone (EL) with the involvement of intestinal bacteria. In this research, we evaluated the anti-osteoporosis effects of SDG and the in vivo metabolites EL and enterodiol (ED) prepared in our previous work, as well as the newly isolated chemical constituents from safflower seed, including TCL, the lactone ring opening product of TCL (OTCL) and two alkaloids on the alloxan-induced zebrafish model. All the compounds showed significant anti-osteoporosis effects at 80 µM, with p < 0.05 for EL and p < 0.001 for other compounds compared with the model. SDG and TCL showed the most significant and concentration-dependent effects, with p < 0.001 compared with model at 20 µM. The alkaloids, N-coumaroylserotonin glucoside and N-feruloylserotonin glucoside, also showed anti-osteoporosis at 20 µM with p < 0.01, whereas EL, ED, and OTCL showed no significant effects. Quantitative real-time polymerase chain reaction revealed that SDG and TCL upregulated the expression of osteogenic genes Runx2, SP7, OPG, Col1a1a, Alp, ON, OPN, and OCN in alloxan-treated zebrafish. The in vivo metabolite of lignans, EL, showed significant anti-inflammatory effect (p < 0.01) at 20 µM, which might also help to combat osteoporosis and other complications caused by excessive immune response in the body. The results provided scientific data for using the oil extraction by-products as sources of anti-osteoporosis compounds. PRACTICAL APPLICATION: This study found that lignans in flaxseed cake and safflower seed cake exhibited anti-osteoporosis effects by upregulating the expression of osteogenic genes, making the oil extraction by-products sources of anti-osteoporosis compounds.


Subject(s)
Alkaloids , Carthamus tinctorius , Flax , Lignans , Animals , Flax/chemistry , Zebrafish , Alloxan/analysis , Alloxan/metabolism , Glucosides/analysis , Mammals , Lignans/pharmacology , Seeds/chemistry , 4-Butyrolactone , Butylene Glycols/pharmacology , Butylene Glycols/analysis , Alkaloids/analysis
10.
J Asian Nat Prod Res ; 14(2): 176-81, 2012.
Article in English | MEDLINE | ID: mdl-22296159

ABSTRACT

In a series of studies on the metabolism of iridoid compounds, we investigated the metabolic fate of swertiamarin (1) in Wistar rats. Liquid chromatography/ion trap mass spectrometry detected new nitrogen-containing metabolite gentiandiol (3) in rat plasma. The structure of the metabolite was unequivocally identified by comparing the retention time as well as the mass spectrum with those of authentic compound, which was synthesized from swertiamarin (1). The transformation of swertiamarin to nitrogen-containing metabolite gentiandiol (3) in vivo was verified for the first time. Understanding of this unique metabolic pathway may shed light on clinical efficacy of swertiamarin (1) and will also assist in studies for the metabolism of other natural iridoids in vivo.


Subject(s)
Iridoid Glucosides/analysis , Pyrones/analysis , Administration, Oral , Alkaloids/chemical synthesis , Alkaloids/chemistry , Animals , Feces/chemistry , Iridoid Glucosides/administration & dosage , Iridoid Glucosides/blood , Iridoid Glucosides/chemistry , Iridoid Glucosides/urine , Male , Microsomes, Liver/chemistry , Nitrogen/analysis , Nuclear Magnetic Resonance, Biomolecular , Pyrones/administration & dosage , Pyrones/blood , Pyrones/chemistry , Pyrones/urine , Rats , Rats, Wistar
11.
J Ethnopharmacol ; 285: 114837, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34788644

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The stems of Ephedra sinica and the fruits of Terminalia chebula are combined using in traditional Mongolian medicine formula "Gurigumu-7" for liver diseases. E. sinica stems contains ephedrine with broncho-dilatory activity. However, ephedrine can pass through the blood-brain barrier (BBB) and excite the central nervous system (CNS) to cause insomnia and restlessness. AIM OF THE STUDY: The present study was to investigate the structures and bioactivities of new compounds formed in vivo after co-administration of E. sinica stems and T. chebula fruits. MATERIALS AND METHODS: Pharmacokinetic investigation was carried out in rats. A parallel artificial membrane permeability measurement system was used to determine BBB permeability. Ex vivo experiments using tracheal rings of guinea pig was performed to examine the tracheal relaxation effect. In vivo hepatoprotective tests were carried out in Tg (fabp10a: dsRed) liver transgenic zebrafish. The fluorescent probe, 2,7-dichlorodihydrofluorescein diacetate, was used to measure reactive oxygen species, and UHPLC-MS was used to determine glutathione concentrations after derivatization with N-ethylmaleimide. RESULTS: New ephedrine derivatives (1 and 2) formed in vivo and reached their maximum serum concentrations at 0.5 h after administration of the two herbal drugs. Compounds 1 and 2 showed lower BBB permeability than ephedrine, suggesting that they have less adverse effects on the CNS. Compounds 1 and 2 relaxed the tracheal rings and had strong hepatoprotective effect on transgenic zebrafish with liver specific expression of RFP. Compounds 1 and 2 significantly reduced the level of reactive oxygen species while increasing that of glutathione in thioacetamide-treated zebrafish, which might be the hepatoprotective mechanism. CONCLUSION: These results provided evidences that the chemical constituents in various herbal drugs in a medicinal formula can interact to generate new compounds with fewer side effects and increased or additive bioactivity.


Subject(s)
Ephedra sinica/chemistry , Ephedrine , Plant Extracts/pharmacology , Sleep Initiation and Maintenance Disorders , Terminalia/chemistry , Animals , Blood-Brain Barrier/drug effects , Bronchodilator Agents/pharmacology , Central Nervous System/drug effects , Drug Combinations , Ephedrine/analogs & derivatives , Ephedrine/pharmacokinetics , Guinea Pigs , Plant Extracts/chemistry , Rats , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/prevention & control
12.
J Food Sci ; 87(11): 4905-4916, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36303405

ABSTRACT

The flavan-3-ols of 10 primarily plant food byproducts, including Muscat Hamburg grape seed, hawthorn sarcocarp, litchi pericarp, cocoa bean, peanut skin, lotus seedpod, Xinyang Maojian green tea, Cinnamomi cortex, Sargentodoxa cuneata stem, and Cyperus esculentus, leaves were analyzed. Ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry was used for the analysis. Cyperus esculentus leaves contained a high amount of procyanidin B1 (198.9 mg/100 g), second only to Muscat Hamburg grape seed (292.9 mg/100 g). Unlike grape seed that contained several procyanidin B isomers with very similar retention times, C. esculentus leaves contained primarily procyanidin B1 with few isomers. Procyanidin B1 was enriched in the ethyl acetate fraction of a 70% methanol extract of C. esculentus leaves and purified at 95% purity by two runs of open column chromatography. Direct chromatography of the plant extract on octadecylsilane and Sephadex LH20 open columns improved the yield of the resultant leaf procyanidin B1 (95% purity) to 0.21‰. The present research demonstrated that the leaves of C. esculentus, byproducts of tigernut, are ideal plant sources for isolating and providing high-purity procyanidin B1. PRACTICAL APPLICATION: Procyanidin B1 has a broad range of health benefits. Cyperus esculentus is cultivated in many countries with nearly 6190 square hectares (hm2 ) in the Spanish Mediterranean region in 2020-2021 and over 16,700 hm2 in China in recent years, primarily for its tubers. The byproducts, the leaves of C. esculentus, contain high levels of procyanidin B1, with few isomers that interfere with its isolation and purification. Thus, the leaves of this plant provide a viable source for preparing high-purity procyanidin B1.


Subject(s)
Crataegus , Cyperus , Cyperus/chemistry , Plant Extracts/chemistry , Antioxidants
13.
Front Pharmacol ; 13: 974216, 2022.
Article in English | MEDLINE | ID: mdl-36210813

ABSTRACT

Background: The florets of Carthamus tinctorius L. (Safflower) is an important traditional medicine for promoting blood circulation and removing blood stasis. However, its bioactive compounds and mechanism of action need further clarification. Objective: This study aims to investigate the effect and possible mechanism of 6-hydroxykaempferol 3,6-di-O-glucoside-7-O-glucuronide (HGG) from Safflower on endothelial injury in vitro, and to verify its anti-thrombotic activity in vivo. Methods: The endothelial injury on human umbilical vein endothelial cells (HUVECs) was induced by oxygen-glucose deprivation followed by reoxygenation (OGD/R). The effect of HGG on the proliferation of HUVECs under OGD/R was evaluated by MTT, LDH release, Hoechst-33342 staining, and Annexin V-FITC apoptosis assay. RNA-seq, RT-qPCR, Enzyme-linked immunosorbent assay and Western blot experiments were performed to uncover the molecular mechanism. The anti-thrombotic effect of HGG in vivo was evaluated using phenylhydrazine (PHZ)-induced zebrafish thrombosis model. Results: HGG significantly protected OGD/R induced endothelial injury, and decreased HUVECs apoptosis by regulating expressions of hypoxia inducible factor-1 alpha (HIF-1α) and nuclear factor kappa B (NF-κB) at both transcriptome and protein levels. Moreover, HGG reversed the mRNA expression of pro-inflammatory cytokines including IL-1ß, IL-6, and TNF-α, and reduced the release of IL-6 after OGD/R. In addition, HGG exhibited protective effects against PHZ-induced zebrafish thrombosis and improved blood circulation. Conclusion: HGG regulates the expression of HIF-1α and NF-κB, protects OGD/R induced endothelial dysfunction in vitro and has anti-thrombotic activity in PHZ-induced thrombosis in vivo.

14.
Chem Pharm Bull (Tokyo) ; 59(1): 23-7, 2011.
Article in English | MEDLINE | ID: mdl-21212542

ABSTRACT

C-Glycosides are usually resistant against acidic hydrolysis and enzymatic treatments because C-1 of the sugar moiety is directly attached to the aglycone by C-C bonding. Nevertheless, a human intestinal bacterium, strain PUE, can cleave the C-glucosyl bond of puerarin to yield its aglycone daidzein. To clarify the mechanism of the cleaving reaction, we tried to identify the structure of the metabolite derived from the sugar moiety of puerarin. To detect it easily, deuterium labeled puerarin, [6″,6″-D(2)]puerarin, was prepared in 7 steps. Sugars contained in a metabolite mixture from [6″,6″-D(2)]puerarin was analyzed by an HPLC-electrospray ionization (ESI)-MS method after treatment of sugars with 1-phenyl-3-methyl-5-pyrazolone (PMP). Since deuterium labeled glucose was detected in the metabolite mixture of [6″,6″-D(2)]puerarin, we concluded that puerarin was metabolized to daidzein and an intact glucose by strain PUE. As C-1 of the sugar was hydroxylated instead of hydrogenating, C-glucosyl bond-cleaving reaction is not reduction but hydrolysis. This is the first report of revealing the reaction manner and the exact products of C-glucosyl bond-cleaving reaction.


Subject(s)
Bacteria/metabolism , Glucose/metabolism , Intestines/microbiology , Isoflavones/metabolism , Chromatography, High Pressure Liquid , Deuterium/chemistry , Humans , Isoflavones/chemistry , Spectrometry, Mass, Electrospray Ionization
15.
Nat Prod Res ; 35(5): 815-818, 2021 Mar.
Article in English | MEDLINE | ID: mdl-30990333

ABSTRACT

This study examined the inhibition and mechanism of natural product pentagalloyl glucose (PGG) against HepG2 cells and determined the effects of its combination with the clinical chemotherapeutic drug, 5-FU. PGG was found to inhibit the proliferation, migration and invasion of HepG2 cells, induced G1 arrest and apoptosis in both concentration- and time- dependent manners. The combination of PGG and 5-FU had synergistic effects on reversal the aggressive phenotypes of HepG2 cells, increasing the proportion of Bax/Bcl-2, promoting the activation of caspase-9 and caspase-3, and inducing apoptosis. This combination upregulated P27 and cyclin B1, and downregulated cyclin E1, leading to G1 phase arrest. The combination significantly downregulated MDR1 and LRP1, suggesting the potential to reverse the resistance to 5-FU.


Subject(s)
Fluorouracil/pharmacology , Hydrolyzable Tannins/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Neoplasm Invasiveness , Phenotype
16.
Phytomedicine ; 87: 153579, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33991865

ABSTRACT

BACKGROUND: Hydroxysafflor yellow A (HSYA) from the flower of Carthamus tinctorius (Safflower) has been reported to have various pharmacological effects. However, little is known about the bioactivities of other chemical constituents in Safflower and the relationship between enhancement of blood circulation and hepatoprotection by HSYA. PURPOSE: The present research was to evaluate the antithrombotic and hepatoprotective activities of HSYA and C, examine their mechanisms of actions, including influence on the excretion velocity of acetaminophen, and the relationship between the antithrombotic, hepatoprotective, and other bioactivities. METHODS: The hepatoprotective activities were examined by acetaminophen (APAP)-induced zebrafish toxicity and carbon tetrachloride (CCl4)-induced mouse liver injury. The concentrations of APAP in zebrafish and APAP that was excreted to the culture media were quantified by UHPLC-MS. The anti-thrombosis effect of HSYA and C were examined by the phenylhydrazine (PHZ)-induced zebrafish thrombosis. RESULTS: HSYA and HSYC showed robust protection on APAP-induced toxicity and PHZ-induced thrombosis. The hepatoprotective effects of HSYA and C were more potent than that of the positive control, acetylcysteine (61.7% and 58.0%, respectively, vs. 56.9% at 100 µM) and their antithrombosis effects were more robust than aspirin (95.1% and 86.2% vs. 52.7% at 100 µM). HSYA and C enhanced blood circulation, rescued APAP-treated zebrafish from morphological abnormalities, and mitigated APAP-induced toxicity in liver development in liver-specific RFP-expressing transgenic zebrafish. HSYC attenuated CCl4-induced mouse liver injury and regulated the levels of HIF-1α, iNOS, TNF-α, α-SMA, and NFκB in liver tissues. HSYA was also protective in a dual thrombotic and liver toxicity zebrafish model. By UHPLC-MS, HSYA accelerated the excretion of APAP. CONCLUSION: HSYA and C are the bioactive constituents of Safflower that are responsible for the herbal drug's traditional use in promoting blood circulation to remove blood stasis. Safflower and its chalcone constituents may protect from damage due to exogenous or disease-induced endogenous toxins by enhancing the excretion velocity of toxins.


Subject(s)
Acetaminophen/toxicity , Chalcone/analogs & derivatives , Fibrinolytic Agents/pharmacology , Protective Agents/pharmacology , Quinones/pharmacology , Acetaminophen/pharmacokinetics , Animals , Animals, Genetically Modified , Blood Circulation/drug effects , Carbon Tetrachloride/toxicity , Carthamus tinctorius/chemistry , Chalcone/isolation & purification , Chalcone/pharmacology , Chalcones/isolation & purification , Chalcones/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Glycosides/isolation & purification , Glycosides/pharmacology , Hepatocytes/drug effects , Humans , Male , Mice, Inbred ICR , Phenylhydrazines/toxicity , Protective Agents/chemistry , Protective Agents/isolation & purification , Quinones/isolation & purification , Thrombosis/chemically induced , Thrombosis/drug therapy , Zebrafish/genetics
17.
Phytomedicine ; 83: 153479, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33561764

ABSTRACT

BACKGROUND: The fruit of Terminalia chebula Retz. is one of the most widely used herbal drug in Traditional medicine prescriptions including those for liver diseases. In the screening of bioactive constituents that have potential hepatoprotective activity, chebulinic acid (CA) which is a major chemical constituent of T. chebula fruit showed potent activity. PURPOSE: This work was conducted to investigate the hepatoprotective activity and mechanisms of CA. METHODS: The hepatoprotective effect of CA was examined on hepatotoxic models of cells, zebrafish larvae and mice caused by tert-butyl hydrogen peroxide (t-BHP), acetaminophen (APAP) and CCl4, respectively. RESULTS: Pretreatment with CA could prevent t-BHP-induced damage in L-02 hepatocytes by blocking the production of ROS, reducing LDH levels and enhancing HO-1 and NQO1 expression via MAPK/Nrf2 signaling pathway. In animal experiments, CA significantly protected mice from CCl4-induced liver injury, as demonstrated by reduced ALT, AST and MDA levels, enhanced SOD activity, improved liver histopathological changes, and the activation of the Nrf2/HO-1 signaling pathway. CA metabolized to chebulic acid isomers with DPPH radical scavenging activity. In a transgenic zebrafish line with liver specific expression of DsRed RFP, CA diminished the hepatotoxicity induced by 10 mM APAP. CONCLUSION: Experiments in cell and two animal models demonstrated consistent results and comprehensively expounded the hepatoprotective effects of CA.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Hydrolyzable Tannins/pharmacology , Protective Agents/pharmacology , Terminalia/chemistry , Acetaminophen/adverse effects , Animals , Animals, Genetically Modified , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Fruit/chemistry , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Larva/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Inbred ICR , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Zebrafish/genetics , Zebrafish Proteins/genetics , tert-Butylhydroperoxide/toxicity
18.
Bioorg Med Chem ; 18(2): 863-9, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20004585

ABSTRACT

In our continued research on chlorogenic acid analogues and derivatives with improved bioactivity, we have synthesized some caffeoyl 5,6-anhydroquinic acid derivatives. The 1,7 acetonides of chlorogenic acid (15), and of the mono-caffeoyl 5,6-anhydroquinic acids (7-8) showed appreciable anti-HIV activity. The 3,4-dicaffeoyl 5,6-anhydroquinic acid (12) exhibited an anti-HIV activity twice as that of 3,5-dicaffeoylquinic acid (22). The caffeoyl 5,6-anhydroquinic acid derivatives displayed potent anti-oxidant activities. The mono-caffeoyl 5,6-anhydroquinic acids (10-11) were more than twice stronger than chlorogenic acid (21) on SOD-like activity.


Subject(s)
Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Caffeic Acids/chemical synthesis , Caffeic Acids/pharmacology , HIV-1/drug effects , Quinic Acid/analogs & derivatives , Animals , Anti-HIV Agents/chemistry , Antioxidants/chemistry , Caffeic Acids/chemistry , Cell Line, Tumor , Drug Evaluation, Preclinical , Microbial Sensitivity Tests , Molecular Structure , Quinic Acid/chemical synthesis , Quinic Acid/chemistry , Quinic Acid/pharmacology , Stereoisomerism , Structure-Activity Relationship
19.
Bioorg Med Chem ; 18(19): 7009-14, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20813534

ABSTRACT

New derivatives of caffeic acid and quinic acid were synthesized and their anti-fungal and inhibitory activities on fungal 1,3-ß-glucan synthase were determined in comparison with those of the corresponding chlorogenic acid derivatives. All the chlorogenic, quinic and caffeic acid derivatives that were coupled with an H(2)N-orn-4-(octyloxy) aniline group (1, 1b and 1c) displayed potent activities in both anti-fungal and inhibition of 1,3-glucan synthase assays. Compounds 1 and 1c inhibited the fungal membrane enzyme with the potency comparable to that of a known 1,3-ß-D-glucan synthase inhibitor, aculeacin A. The results revealed that the anti-fungal activity of the chlorogenic acid derivative with a free amino group was at least partly due to inhibition of the fungal 1,3-ß-glucan synthase. These results suggest that further investigation on caffeic acid derivatives may lead to the discovery of novel anti-fungal agents with drug-like properties.


Subject(s)
Antifungal Agents/pharmacology , Caffeic Acids/pharmacology , Candida albicans/drug effects , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Quinic Acid/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Caffeic Acids/chemical synthesis , Caffeic Acids/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glucosyltransferases/metabolism , Microbial Sensitivity Tests , Molecular Structure , Quinic Acid/chemical synthesis , Quinic Acid/chemistry , Stereoisomerism , Structure-Activity Relationship
20.
Biol Pharm Bull ; 33(4): 669-76, 2010.
Article in English | MEDLINE | ID: mdl-20410604

ABSTRACT

The alkaloid, rhynchophylline (RHY), from the stems and hooks of Uncaria rhynchophylla was revealed in recent years to have protective effect on neuronal damage. The present research was carried out to investigate the in vivo metabolism of this bioactive alkaloid. After administering RHY to rats, LC-MS detected RHY in plasma, bile, brain, urine and feces, the glucuronides, 11-hydroxyrhynchophylline 11-O-beta-D-glucuronide (M1) and 10-hydroxyrhynchophylline 10-O-beta-D-glucuronide (M2) in bile, and 11-hydroxyrhynchophylline (M3) and 10-hydroxyrhynchophylline (M4) in urine and feces. Within 24 h, 78.0% of RHY was excreted into the feces and 12.6% into the urine of rats after oral administration of 37.5 mg/kg. Monitoring by LC-MS showed that 9.4% of RHY was metabolized to M3 and M4 in a ratio of about 1 : 1. RHY was also detected in the brain (0.650 ng/g) at 3 h after oral administration of the same dose. Cytochrome P450 (CYP) in rat liver microsomes played a key role in RHY hydroxylation. Specific inhibition of CYP isozymes indicated that CYP2D, CYP1A1/2 and CYP2C participated in RHY hydroxylation, but not CYP3A.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Indole Alkaloids/metabolism , Microsomes, Liver/metabolism , Plant Extracts/metabolism , Uncaria/chemistry , Animals , Feces/chemistry , Hydroxylation , Inactivation, Metabolic , Indole Alkaloids/pharmacokinetics , Isoenzymes , Male , Oxindoles , Plant Extracts/pharmacokinetics , Plant Stems , Rats , Rats, Wistar , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL