Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
ACS Food Sci Technol ; 2(10): 1546-1557, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36313154

ABSTRACT

Belgian endive is grown in a two-step cultivation process that involves growing of the plants in the field, cold storage of the taproots, and a second growth period in dark conditions called forcing to yield the witloof heads. In this study, the changes in the carbohydrate content and the secondary metabolite composition were studied in different tissues of Belgian endive during the cultivation process. Belgian endive heads contain between 336-388 mg/g DW of total soluble carbohydrates, predominantly fructose and glucose. The heads also contain phenolic compounds and terpenoids that give Belgian endive its characteristic bitter taste. The terpenoid and phenolic compound composition of the heads was found to be constant during the cultivation season, regardless of the root storage time. In roots, the main storage carbohydrate, inulin, was degraded during storage and forcing processes; however, more than 70% of total soluble carbohydrates remained unused after forcing. Additionally, high amounts of phenolics and terpenoids were found in the Belgian endive taproots, predominantly chlorogenic acid, isochlorogenic acid A, and sesquiterpene lactones. As shown in this study, Belgian endive taproots, which are currently discarded after forcing, are rich in carbohydrates, terpenes, and phenolic compounds and therefore have the potential for further valorization. This systematic study contributes to the understanding of the carbohydrate and secondary metabolite metabolism during the cultivation process of Belgian endive.

2.
Sci Rep ; 11(1): 370, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33432019

ABSTRACT

Degradability of organic matter (OM) in soil depends on its spatial location in the soil matrix. A recent breakthrough in 3D-localization of OM combined dual-energy X-ray CT-scanning with OsO4 staining of OM. The necessity for synchrotron-based µCT and the use of highly toxic OsO4 severely limit applications in soil biological experiments. Here, we evaluated the potential of alternative staining agents (silver nitrate, phosphomolybdenic acid (PMA), lead nitrate, lead acetate) to selectively enhance X-ray attenuation and contrast of OM in CT volumes of soils containing specific mineral soil particle fractions, obtained via lab-based X-ray µCT. In comparison with OsO4, administration of Ag+ and Pb2+ resulted in insufficient contrast enhancement of OM versus fine silt (< 20 µm) or clay (< 2 µm) mineral particles. The perfusion procedure used in this work induced changes in soil structure. In contrast, PMA staining resulted in a selective increase of OM's attenuation contrast, which was comparable to OsO4. However, OM discrimination from other soil phases remained a challenge. Further development of segmentation algorithms accounting for grey value patterns and shape of stained particulate OM may enable its automated identification. If successful in undisturbed soils, PMA staining may form an alternative to OsO4 in non-synchrotron based POM detection.

3.
Front Microbiol ; 9: 1433, 2018.
Article in English | MEDLINE | ID: mdl-30034375

ABSTRACT

Mineral nitrogen (N) availability to heterotrophic micro-organisms is known to impact organic matter (OM) decomposition. Different pathways determining the N accessibility depend to a large extent on soil structure. Contact between soil mineral and OM substrate particles can facilitate N transport toward decomposition hot spots. However, the impact of soil structure on N availability to microbes and thus heterotrophic microbial activity and community structure is not yet fully understood. We hypothesized that carbon mineralization (Cmin) from low-N substrate would be stimulated by increased N availability caused by closer contact with soil particles or by a higher moisture level, enhancing potential for N-diffusion. Under opposite conditions retarded heterotrophic activity and a dominance of fungi were expected. A 128-days incubation experiment with CO2 emission monitoring from artificially reconstructed miniature soil cores with contrasting soil structures, viz. high or low degree of contact between soil particles, was conducted to study impacts on heterotrophic activity. The soil cores were subjected to different water filled pore space percentages (25 or 50% WFPS) and amended with either easily degradable OM high in N (grass) or more resistant OM low in N (sawdust). X-ray µCT image processing allowed to quantify the pore space in 350 µm around OM substrates, i.e., the microbial habitat of involved decomposers. A lower local porosity surrounding sawdust particles in soils with stonger contact was confirmed, at least at 25% WFPS. Mineral N addition to sawdust amended soils with small particle contact at 25% WFPS resulted in a stimulated respiration. Cmin in the latter soils was lower than in case of high particle contact. This was not observed for grass substrate particles or at 50% WFPS. The interactive effect of substrate type and soil structure suggests that the latter controls Cmin through mediation of N diffusion and in turn N availability. Phospholipid fatty acid did not reveal promotion of fungal over bacterial biomarkers in treatments with N-limited substrate decomposition. Combining X-ray µCT with tailoring soil structure allows for more reliable investigation of effects on the soil microbial community, because as also found here, the established soil pore network structure can strongly deviate from the intended one.

4.
PLoS One ; 10(9): e0136244, 2015.
Article in English | MEDLINE | ID: mdl-26393517

ABSTRACT

To understand the roles of nematodes in organic matter (OM) decomposition, experimental setups should include the entire nematode community, the native soil microflora, and their food sources. Yet, published studies are often based on either simplified experimental setups, using only a few selected species of nematode and their respective prey, despite the multitude of species present in natural soil, or on indirect estimation of the mineralization process using O2 consumption and the fresh weight of nematodes. We set up a six-month incubation experiment to quantify the contribution of the entire free living nematode community to carbon (C) mineralization under realistic conditions. The following treatments were compared with and without grass-clover amendment: defaunated soil reinoculated with the entire free living nematode communities (+Nem) and defaunated soil that was not reinoculated (-Nem). We also included untreated fresh soil as a control (CTR). Nematode abundances and diversity in +Nem was comparable to the CTR showing the success of the reinoculation. No significant differences in C mineralization were found between +Nem and -Nem treatments of the amended and unamended samples at the end of incubation. Other related parameters such as microbial biomass C and enzymatic activities did not show significant differences between +Nem and -Nem treatments in both amended and unamended samples. These findings show that the collective contribution of the entire nematode community to C mineralization is small. Previous reports in literature based on simplified experimental setups and indirect estimations are contrasting with the findings of the current study and further investigations are needed to elucidate the extent and the mechanisms of nematode involvement in C mineralization.


Subject(s)
Carbon/metabolism , Nematoda/metabolism , Nitrogen/metabolism , Soil/chemistry , Animals , Biomass , Cellulases/metabolism , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Nematoda/enzymology , Oxidoreductases/metabolism , Poaceae/growth & development , Poaceae/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL