Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Med Genet A ; 185(3): 774-780, 2021 03.
Article in English | MEDLINE | ID: mdl-33382187

ABSTRACT

Noonan syndrome (NS) and NS related disorders (NRD) are frequent monogenic diseases. Pathogenic variants in PTPN11 are observed in approximately 50% of these NS patients. Several pleiotropic phenotypes have previously been described in this condition. This study aimed at characterizing glucose and lipid profiles in patients with NS/NRD. We assessed fasting blood glucose, insulin, cholesterol (total and fractions), and triglyceride (TG) levels in 112 prepubertal children and 73 adults. Additionally, an oral glucose tolerance test (OGTT) was performed in 40 children and 54 adults. Data were analyzed between age groups according to the presence (+) or absence (-) of PTPN11 mutation. Prepubertal patients with NS/NRD were also compared with a control group. Despite the lean phenotype of children with NS/NRD, they presented an increased frequency of low HDL-cholesterol (63% in PTPN11+, 59% in PTPN11- and 16% in control, p < .001) and high TG levels (29% in PTPN11+, 18% in PTPN11- and 2.3% in control). PTPN11+ patients had a higher median HOMA-IR (1.0, ranged from 0.3 to 3.2) in comparison with PTPN11- (0.6; 0.2 to 4.4) and controls (0.6; 0.4 to 1.4, p = .027). Impaired glucose tolerance was observed in 19% (10:54) of lean adults with NS/NRD assessed by OGTT. Moreover, women with PTPN11 mutations had lower HDL-cholesterol levels than those without. Our results suggest that children and young adult patients with NS/NRD have an unfavorable metabolic profile characterized by low HDL, a tendency of elevated TGs, and glucose metabolism impairment despite a lean phenotype.


Subject(s)
Metabolome , Noonan Syndrome/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adolescent , Adult , Aged , Cross-Sectional Studies , Female , Follow-Up Studies , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Mutation , Noonan Syndrome/genetics , Noonan Syndrome/metabolism , Phenotype , Prognosis , Young Adult
2.
Am J Med Genet C Semin Med Genet ; 184(4): 896-911, 2020 12.
Article in English | MEDLINE | ID: mdl-33128510

ABSTRACT

We report the clinical and molecular data of a large cohort comprising 242 individuals with RASopathies, from a single Tertiary Center in Brazil, the largest study from Latin America. Noonan syndrome represented 76% of the subjects, with heterozygous variants in nine different genes, mainly PTPN11, SOS1, RAF1, LZTR1, and RIT1, detected by Sanger and next-generation sequencing. The latter was applied to 126 individuals, with a positive yield of 63% in genes of the RAS/MAPK cascade. We present evidence that there are some allelic differences in PTPN11 across distinct populations. We highlight the clinical aspects that pose more medical concerns, such as the cardiac anomalies, bleeding diathesis and proliferative lesions. The genotype-phenotype analysis between the RASopathies showed statistically significant differences in some cardinal features, such as craniofacial and cardiac anomalies, the latter also statistically significant for different genes in Noonan syndrome. We present two individuals with a Noonan syndrome phenotype, one with an atypical, structural cardiac defect, harboring variants in genes mainly associated with isolated hypertrophic cardiomyopathy and discuss the role of these variants in their phenotype.


Subject(s)
Noonan Syndrome , Brazil , Genotype , Humans , Mutation , Noonan Syndrome/genetics , Phenotype
3.
Pediatr Endocrinol Rev ; 16(Suppl 1): 105-112, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30378788

ABSTRACT

Despite the difficulty to define born small for gestational age (SGA), being SGA has been associated with a higher risk of short stature, early-onset and rapid progression of puberty, neurocognitive dysfunctions, alterations in body composition, bone density, glucose and lipid metabolism and increased risk for cardiovascular diseases later in life. The majority of children born SGA experience spontaneous catch-up growth during the first years of life. For those who remain with short stature, treatment with recombinant human growth hormone (rhGH) may be initiated, preferably after 2-4 years of age. Response to treatment is variable. However, the benefits of rhGH go beyond increase in stature as the therapy may also improve body composition. In this review we will cover the indication and effects of GH therapy in short children born SGA.


Subject(s)
Human Growth Hormone/therapeutic use , Sexual Maturation , Body Height , Child, Preschool , Female , Gestational Age , Growth Disorders , Humans , Infant, Small for Gestational Age , Pregnancy
4.
J Med Genet ; 52(6): 413-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25795793

ABSTRACT

BACKGROUND: Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. METHODS: A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. RESULTS: We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. CONCLUSIONS: We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome.


Subject(s)
Genetic Association Studies , Genetic Variation , Noonan Syndrome/genetics , Son of Sevenless Proteins/genetics , Transcription Factors/genetics , Cohort Studies , Facies , Female , Humans , Male , Mitogen-Activated Protein Kinases/metabolism , Noonan Syndrome/diagnosis , Pedigree , Phenotype , Signal Transduction , ras Proteins/metabolism
5.
Am J Med Genet A ; 164A(11): 2952-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25124994

ABSTRACT

Noonan syndrome (NS) is an autosomal dominant disorder consisting of short stature, short and/or webbed neck, distinctive facial features, cardiac abnormalities, cryptorchidism, and coagulation defects. NS exhibits genetic heterogeneity, associated with mutated genes that participate in RAS-mitogen-activated protein kinase signal transduction. Recently, a new gene (RIT1) was discovered as the causative gene in 17 of 180 Japanese individuals who were negative for the previously known genes for NS and were studied using exome sequencing (four patients), followed by Sanger sequencing (13 patients). The present study used the same technique in 70 Brazilian patients with NS and identified six with RIT1 missense mutations. Thus, we confirm that RIT1 is responsible for approximately 10% of the patients negative for mutations in the previously known genes. The phenotype includes a high frequency of high birth weight, relative macrocephaly, left ventricular hypertrophy, and ectodermal findings, such as curly hair, hyperpigmentation, and wrinkled palms and soles. Short stature and pectus deformity were less frequent. The majority of patients with a RIT1 mutation did not show apparent intellectual disability. Because of the relatively high frequency of mutations in RIT1 among patients with NS and its occurrence in different populations, we suggest that it should be added to the list of genes included in panels for the molecular diagnosis of NS through targeted next-generation sequencing.


Subject(s)
Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , ras Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Facies , Female , Fenoterol , Genetic Association Studies , Genetic Heterogeneity , Humans , Male , Mutation , Radiography , Scoliosis/diagnostic imaging , Young Adult
6.
Am J Med Genet A ; 158A(5): 1178-84, 2012 May.
Article in English | MEDLINE | ID: mdl-22488932

ABSTRACT

Noonan syndrome (NS) and Noonan-related disorders [cardio-facio-cutaneous (CFC), Costello, Noonan syndrome with multiple lentigines (NS-ML), and neurofibromatosis-Noonan syndromes (NFNS)] are a group of developmental disorders caused by mutations in genes of the RAS/MAPK pathway. Mutations in the KRAS gene account for only a small proportion of affected Noonan and CFC syndrome patients that present an intermediate phenotype between these two syndromes, with more frequent and severe intellectual disability in NS and less ectodermal involvement in CFC syndrome, as well as atypical clinical findings such as craniosynostosis. Recently, the first familial case with a novel KRAS mutation was described. We report on a second vertical transmission (a mother and two siblings) with a novel mutation (p.M72L), in which the proband has trigonocephaly and the affected mother and sister, prominent ectodermal involvement. Metopic suture involvement has not been described before, expanding the main different cranial sutures which can be affected in NS and KRAS gene mutations. The gene alteration found in the studied family is in close proximity to the one reported in the other familial case (close to the switch II region of the G-domain), suggesting that this specific region of the gene could have less severe effects on intellectual ability than the other KRAS gene mutations found in NS patients and be less likely to hamper reproductive fitness.


Subject(s)
Craniosynostoses/genetics , Mutation , Noonan Syndrome/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Adult , Family , Female , Humans , Infant , Intellectual Disability , Male , Protein Structure, Tertiary , Proto-Oncogene Proteins p21(ras)
7.
Am J Med Genet A ; 158A(11): 2700-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22887833

ABSTRACT

Noonan syndrome (NS) and Noonan-like syndromes (NLS) are autosomal dominant disorders caused by heterozygous mutations in genes of the RAS/MAPK pathway. The aim of the study was to construct specific growth charts for patients with NS and NLS. Anthropometric measurements (mean of 4.3 measurements per patient) were obtained in a mixed cross-sectional and longitudinal mode from 127 NS and 10 NLS patients with mutations identified in PTPN11 (n = 90), SOS1 (n = 14), RAF1 (n = 10), KRAS (n = 8), BRAF (n = 11), and SHOC2 (n = 4) genes. Height, weight, and body mass index (BMI) references were constructed using the lambda, mu, sigma (LMS) method. Patients had birth weight and length within normal ranges for gestational age although a higher preterm frequency (16%) was observed. Mean final heights were 157.4 cm [-2.4 standard deviation score (SDS)] and 148.4 cm (-2.2 SDS) for adult males and females, respectively. BMI SDS was lower when compared to Brazilian standards (BMI SDS of -0.9 and -0.5 SDS for males and females, respectively). Patients harboring mutations in RAF1 and SHOC2 gene were shorter than other genotypes, whereas patients with SOS1 and BRAF mutations had more preserved postnatal growth. In addition, patients with RAF1 and BRAF had the highest BMI whereas patients with SHOC2 and KRAS mutations had the lowest BMI. The present study established the first height, weight, and BMI reference curves for NS and NLS patients, based only on patients with a proven molecular cause. These charts can be useful for the clinical follow-up of patients with NS and NLS.


Subject(s)
Granuloma, Giant Cell/diagnosis , Granuloma, Giant Cell/genetics , Growth Charts , MAP Kinase Signaling System/genetics , Mutation , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Female , Genetic Association Studies , Genotype , Humans , Male , Proto-Oncogene Proteins p21(ras)/genetics
8.
Am J Med Genet A ; 158A(5): 1077-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22488759

ABSTRACT

The association of RASopathies [Noonan syndrome (NS) and Noonan-related syndromes] and autoimmune disorders has been reported sporadically. However, a concomitant evaluation of autoimmune diseases and an assessment of multiple autoantibodies in a large population of patients with molecularly confirmed RASopathy have not been performed. The clinical and laboratory features were analyzed in 42 RASopathy patients, the majority of whom had NS and five individuals had Noonan-related disorders. The following autoantibodies were measured: Anti-nuclear antibodies, anti-double stranded DNA, anti-SS-A/Ro, anti-SS-B/La, anti-Sm, anti-RNP, anti-Scl-70, anti-Jo-1, anti-ribosomal P, IgG and IgM anticardiolipin (aCL), thyroid, anti-smooth muscle, anti-endomysial (AE), anti-liver cytosolic protein type 1 (LC1), anti-parietal cell (APC), anti-mitochondrial (AM) antibodies, anti-liver-kidney microsome type 1 antibodies (LKM-1), and lupus anticoagulant. Six patients (14%) fulfilled the clinical criteria for autoimmune diseases [systemic lupus erythematous, polyendocrinopathy (autoimmune thyroiditis and celiac disease), primary antiphospholipid syndrome (PAPS), autoimmune hepatitis, vitiligo, and autoimmune thyroiditis]. Autoimmune antibodies were observed in 52% of the patients. Remarkably, three (7%) of the patients had specific gastrointestinal and liver autoantibodies without clinical findings. Autoimmune diseases and autoantibodies were frequently present in patients with RASopathies. Until a final conclusion of the real incidence of autoimmunity in Rasopathy is drawn, the physicians should be alerted to the possibility of this association and the need for a fast diagnosis, proper referral to a specialist and ultimately, adequate treatment.


Subject(s)
Autoantibodies/blood , Autoimmune Diseases/immunology , Noonan Syndrome/immunology , Autoantibodies/classification , Autoimmune Diseases/epidemiology , Granuloma, Giant Cell , Humans , Noonan Syndrome/epidemiology
9.
Horm Res Paediatr ; 95(1): 51-61, 2022.
Article in English | MEDLINE | ID: mdl-35176743

ABSTRACT

INTRODUCTION: Pubertal delay is described as one of the clinical features in Noonan syndrome (NS) and it may be one of the factors causing short adult height in those patients. The present study aimed at characterizing pubertal development in NS and identifying pubertal delay predictors. METHODS: We analyzed 133 individuals with a molecular diagnosis of NS and clinical puberty evaluation. We characterized delayed puberty as pubertal onset after 12 years in girls and 13.5 years in boys, according to parameters of the Brazilian population. To investigate its predictors, we correlated the age at onset of puberty with several characteristics and genotype in a multilevel regression model. For comprehending pubertal development in NS, we assessed age and anthropometric measures at each Tanner stage and adult age. RESULTS: The mean age at puberty onset for girls was 11.9 ± 1.9 years and for boys, 12.5 ± 1.7 years, significantly later than the Brazilian population (p = 0.025; p < 0.001). Girls (49.1%) presented delayed puberty more frequently than boys (27.9%, p = 0.031). Body mass index standard deviation scores (SDS) and insulin growth factor 1 SDS at puberty onset significantly predicted later puberty entry. Height gain from the onset of puberty to adult height was lower in children with pubertal delay. CONCLUSION: Pubertal delay is characteristically found in children with NS, more frequently in females. The low weight of patients with NS could modulate the age of puberty, just as the increase in overweight/obesity in the general population has shown an effect on reducing the age of onset of puberty.


Subject(s)
Noonan Syndrome , Puberty, Delayed , Body Height , Female , Humans , Noonan Syndrome/genetics , Phenotype , Puberty
10.
Mol Cell Endocrinol ; 519: 111040, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33011209

ABSTRACT

RASopathies are a heterogeneous group of syndromes caused by germline mutations in genes encoding components of the RAS/MAPK pathway. Postnatal short stature is a cardinal feature of the RASopathies. Although the pathophysiology of these conditions is not fully understood to date, growth hormone insensitivity is one possibility, based on the observation of low IGF-1 values, generally preserved GH secretion and suboptimal growth response to recombinant human GH therapy. In this review, we will discuss the clinical and experimental evidence of GH insensitivity in patients with Noonan syndrome and other RASopathies, as well as their molecular basis.


Subject(s)
Growth Hormone/pharmacology , MAP Kinase Signaling System/drug effects , ras Proteins/metabolism , Animals , Enzyme Activation/drug effects , Humans , Models, Biological
11.
Horm Res ; 71(4): 185-93, 2009.
Article in English | MEDLINE | ID: mdl-19258709

ABSTRACT

Noonan syndrome (NS) is one of the most common syndromes transmitted by a mendelian mode. In recent years, germline mutations that affect components of the RAS-MAPK (mitogen-activated protein kinase) pathway were shown to be involved in the pathogenesis of NS and four rare syndromes with clinical features overlapping with NS: Leopard syndrome, cardio-facio-cutaneous syndrome, Costello syndrome and neurofibromatosis type 1. Several hormones act through receptors that stimulate the RAS-MAPK pathway, and therefore, NS and related disorders represent a remarkable opportunity to study the implication of the RAS-MAPK pathway in different endocrine systems. Additionally, children with NS frequently are referred to the endocrinologist because of short stature, delayed puberty and/or undescended testes in males. In this paper, we review the diagnostic, clinical and molecular aspects of NS and NS-related disorders.


Subject(s)
Genes, ras , MAP Kinase Signaling System/genetics , Noonan Syndrome/genetics , Diagnosis, Differential , Female , Germ-Line Mutation , Human Growth Hormone/physiology , Humans , MAP Kinase Signaling System/physiology , Male , Neoplasms/genetics , Noonan Syndrome/diagnosis , ras Proteins/genetics , ras Proteins/physiology
12.
J Pediatr Endocrinol Metab ; 22(4): 353-61, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19554810

ABSTRACT

UNLABELLED: Association between insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) has been reported. This prompted us to evaluate the power of the insulin sensitivity index (ISI) in association with IGFBP-1 to identify IR early in obese children/adolescents. OGTT was performed in 34 obese/overweight children/adolescents. Glucose, insulin and IGFBP-1 were measured in serum samples and ISI was calculated. Considering the presence of three or more risk factors for IR as a criterion for IR, ISI < 4.6 showed 87.5% sensitivity and 94.5% specificity in diagnosing IR. IGFBP-1 was lower in the group with ISI < 4.6 (p < 0.01). In this group, three patients had higher than expected IGFBP-1, suggesting hepatic IR, while three patients with ISI > 4.6 showed very low IGFBP-1 levels. CONCLUSION: ISI < 4.6 is a good indicator of early peripheral IR and, associated with IGFBP-1, can identify increased risk of hepatic IR. Low IGFBP-1 levels among non-IR children may indicate increased portal insulin levels.


Subject(s)
Insulin Resistance/physiology , Insulin-Like Growth Factor Binding Protein 1/blood , Obesity/blood , Overweight/blood , Child , Cohort Studies , Glucose Tolerance Test , Humans , Lipids/blood
13.
Pediatr Endocrinol Rev ; 6 Suppl 4: 523-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19550387

ABSTRACT

Noonan syndrome (NS) is a phenotypically heterogeneous condition frequently associated with short stature. Genetic investigations have identified mutations in several genes, e.g. PTPN11, KRAS, RAF and SOS1 in patients with the NS phenotype and related disorders such as LEOPARD, Costello and Cardiofacio- cutaneous syndromes. In NS, PTPN11 mutations are present in 29-60% of cases. The degree of short stature does not associate closely with the presence of a mutation; however, some PTPN11-positive patients have decreased growth hormone (GH)-dependent growth factors consistent with mild GH insensitivity. GH therapy induces short-term increases in height velocity over 1-3 years, and is likely to improve adult height.


Subject(s)
Growth Disorders/drug therapy , Growth Disorders/etiology , Human Growth Hormone/therapeutic use , Noonan Syndrome/complications , Noonan Syndrome/drug therapy , Adult , Body Height , Child , Female , Genotype , Heart Defects, Congenital/complications , Humans , Male , Mitogen-Activated Protein Kinases/genetics , Mutation , Noonan Syndrome/genetics , Phenotype , ras Proteins/genetics
14.
J Clin Endocrinol Metab ; 104(6): 2023-2030, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30602027

ABSTRACT

CONTEXT: Patients born small for gestational age (SGA) who present with persistent short stature could have an underlying genetic etiology that will account for prenatal and postnatal growth impairment. We applied a unique massive parallel sequencing approach in cohort of patients with exclusively nonsyndromic SGA to simultaneously interrogate for clinically substantial genetic variants. OBJECTIVE: To perform a genetic investigation of children with isolated short stature born SGA. DESIGN: Screening by exome (n = 16) or targeted gene panel (n = 39) sequencing. SETTING: Tertiary referral center for growth disorders. PATIENTS AND METHODS: We selected 55 patients born SGA with persistent short stature without an identified cause of short stature. MAIN OUTCOME MEASURES: Frequency of pathogenic findings. RESULTS: We identified heterozygous pathogenic or likely pathogenic genetic variants in 8 of 55 patients, all in genes already associated with growth disorders. Four of the genes are associated with growth plate development, IHH (n = 2), NPR2 (n = 2), SHOX (n = 1), and ACAN (n = 1), and two are involved in the RAS/MAPK pathway, PTPN11 (n = 1) and NF1 (n = 1). None of these patients had clinical findings that allowed for a clinical diagnosis. Seven patients were SGA only for length and one was SGA for both length and weight. CONCLUSION: These genomic approaches identified pathogenic or likely pathogenic genetic variants in 8 of 55 patients (15%). Six of the eight patients carried variants in genes associated with growth plate development, indicating that mild forms of skeletal dysplasia could be a cause of growth disorders in this group of patients.


Subject(s)
Body Height/genetics , Growth Disorders/diagnosis , High-Throughput Nucleotide Sequencing , Infant, Small for Gestational Age/growth & development , Body Weight/genetics , Child , Child, Preschool , Female , Genetic Markers/genetics , Growth Disorders/genetics , Humans , Infant, Newborn , Male , Exome Sequencing
15.
Horm Res Paediatr ; 92(2): 115-123, 2019.
Article in English | MEDLINE | ID: mdl-31715605

ABSTRACT

BACKGROUND: Floating-Harbor syndrome (FHS) is a rare condition characterized by dysmorphic facial features, short stature, and expressive language delay. OBJECTIVE: The aim of this study was to describe a cohort of patients with FHS and review the literature about the response to recombinant human growth hormone (rhGH) therapy. METHODS: Anthropometric and laboratory data from 7 patients with FHS were described. The molecular diagnosis was established by multigene analysis. Moreover, we reviewed the literature concerning patients with FHS treated with rhGH. RESULTS: All 7 patients were born small for gestational age. At first evaluation, 6 patients had a height standard deviation score (SDS) ≤-2 and 1 had short stature in relation to their target height. Bone age was usually delayed, which rapidly advanced during puberty. Nonspecific skeletal abnormalities were frequently noticed, and normal to elevated plasma IGF-I levels were observed in all except 1 patient with growth hormone deficiency. Information about 20 patients with FHS treated with rhGH was analyzed (4 from our cohort and 16 from the literature). The median height changes during the treatment period (approx. 2.9 years) were 1.1 SDS (range from -0.4 to 3.1). Nontreated patients had an adult height SDS of -4.1 ± 1.2 (n = 10) versus -2.6 ± 0.8 SDS (n = 7, p 0.012) for treated patients. CONCLUSION: We observed a laboratory profile compatible with IGF-1 insensitivity in some patients with FHS. Nevertheless, our study suggests that children with FHS may be considered as candidates for rhGH therapy. Further studies are necessary to establish the real benefit and safety of rhGH therapy in these patients.


Subject(s)
Abnormalities, Multiple , Adolescent Development/drug effects , Child Development/drug effects , Craniofacial Abnormalities , Dwarfism, Pituitary , Growth Disorders , Heart Septal Defects, Ventricular , Human Growth Hormone/therapeutic use , Puberty/drug effects , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Abnormalities, Multiple/physiopathology , Adolescent , Body Height/drug effects , Child , Child, Preschool , Craniofacial Abnormalities/drug therapy , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Craniofacial Abnormalities/physiopathology , Dwarfism, Pituitary/drug therapy , Dwarfism, Pituitary/metabolism , Dwarfism, Pituitary/pathology , Dwarfism, Pituitary/physiopathology , Female , Growth Disorders/drug therapy , Growth Disorders/metabolism , Growth Disorders/pathology , Growth Disorders/physiopathology , Heart Septal Defects, Ventricular/drug therapy , Heart Septal Defects, Ventricular/metabolism , Heart Septal Defects, Ventricular/pathology , Heart Septal Defects, Ventricular/physiopathology , Humans , Insulin-Like Growth Factor I/metabolism , Male
16.
Horm Res Paediatr ; 91(4): 252-261, 2019.
Article in English | MEDLINE | ID: mdl-31132774

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the response to recombinant human growth hormone (rhGH) treatment in patients with Noonan syndrome (NS). MATERIALS AND METHODS: Forty-two patients (35 PTPN11+) were treated with rhGH, and 17 were followed-up until adult height. The outcomes were changes in growth velocity (GV) and height standard deviation scores (SDS) for normal (height-CDC SDS) and Noonan standards (height-NS SDS). RESULTS: The pretreatment chronological age was 10.3 ± 3.5 years. Height-CDC SDS and height-NS SDS were -3.1 ± 0.7 and -0.5 ± 0.6, respectively. PTPN11+ patients had a better growth response than PTPN11- patients. GV SDS increased from -1.2 ± 1.8 to 3.1 ± 2.8 after the first year of therapy in PTPN11+ patients, and from -1.9 ± 2.6 to -0.1 ± 2.6 in PTPN11- patients. The gain in height-CDC SDS during the first year was higher in PTPN11+ than PTPN11- (0.6 ± 0.4 vs. 0.1 ± 0.2, p = 0.008). Similarly, the gain was observed in height-NS SDS (0.6 ± 0.3 vs. 0.2 ± 0.2, respectively, p < 0.001). Among the patients that reached adult height (n = 17), AH-CDC SDS and AH-NS SDS were -2.1 ± 0.7 and 0.7 ± 0.8, respectively. The total increase in height SDS was 1.3 ± 0.7 and 1.5 ± 0.6 for normal and NS standards, respectively. CONCLUSIONS: This study supports the advantage of rhGH therapy on adult height in PTPN11+ patients. In comparison, PTPN11- patients showed a poor response to rhGH. However, this PTPN11- group was small, preventing an adequate comparison among different genotypes and no guarantee of response to therapy in genes besides PTPN11.


Subject(s)
Body Height/drug effects , Human Growth Hormone/administration & dosage , Mutation , Noonan Syndrome , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adult , Body Height/genetics , Female , Humans , Longitudinal Studies , Male , Noonan Syndrome/drug therapy , Noonan Syndrome/genetics , Noonan Syndrome/physiopathology , Retrospective Studies
17.
Clin Endocrinol (Oxf) ; 69(3): 426-31, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18331608

ABSTRACT

BACKGROUND: Mutations in the PTPN11 gene are the main cause of Noonan syndrome (NS). The presence of some NS features is a frequent finding in children with idiopathic short stature (ISS). These children can represent the milder end of the NS clinical spectrum and PTPN11 is a good candidate for involvement in the pathogenesis of ISS. OBJECTIVE: To evaluate the presence of mutations in PTPN11 in ISS children who presented NS-related signs and in well-characterized NS patients. PATIENTS AND METHODS: We studied 50 ISS children who presented at least two NS-associated signs but did not fulfil the criteria for NS diagnosis. Forty-nine NS patients diagnosed by the criteria of van der Burgt et al. were used to assess the adequacy of these criteria to select patients for PTPN11 mutation screening. The coding region of PTPN11 was amplified by polymerase chain reaction (PCR), followed by direct sequencing. RESULTS: No mutations or polymorphisms were found in the coding region of the PTPN11 gene in ISS children. Nineteen of the 49 NS patients (39%) presented mutations in PTPN11. No single characteristic enabled us to distinguish between NS patients with or without PTPN11 mutations. CONCLUSION: Considering that no mutations were found in the present cohort with NS-related signs, it is unlikely that mutations would be found in unselected ISS children. The van der Burgt et al. criteria are adequate in attaining NS diagnosis and selecting patients for molecular studies. Mutations in the PTPN11 gene are commonly involved in the pathogenesis of NS but are not a common cause of ISS.


Subject(s)
Growth Disorders/genetics , Noonan Syndrome/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adolescent , Body Height/genetics , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Gene Frequency , Growth Disorders/complications , Humans , Male , Noonan Syndrome/complications , Polymorphism, Single Nucleotide/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/analysis
18.
Eur J Med Genet ; 61(3): 130-133, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29133208

ABSTRACT

BACKGROUND: Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. CLINICAL REPORT: The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. METHODS: We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. RESULTS: We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. CONCLUSION: It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members.


Subject(s)
BRCA1 Protein/genetics , Fanconi Anemia/genetics , Fanconi Anemia/pathology , Genetic Predisposition to Disease , Homozygote , Mutation , Child, Preschool , Female , Genotype , Humans , Male , Pedigree , Phenotype
19.
Horm Res Paediatr ; 89(1): 13-21, 2018.
Article in English | MEDLINE | ID: mdl-29130988

ABSTRACT

BACKGROUND/AIMS: Genetic imbalances are responsible for many cases of short stature of unknown etiology. This study aims to identify recurrent pathogenic copy number variants (CNVs) in patients with syndromic short stature of unknown cause. METHODS: We selected 229 children with short stature and dysmorphic features, developmental delay, and/or intellectual disability, but without a recognized syndrome. All patients were evaluated by chromosomal microarray (array-based comparative genomic hybridization/single nucleotide polymorphism array). Additionally, we searched databases and previous studies to recover recurrent pathogenic CNVs associated with short stature. RESULTS: We identified 32 pathogenic/probably pathogenic CNVs in 229 patients. By reviewing the literature, we selected 4 previous studies which evaluated CNVs in cohorts of patients with short stature. Taken together, there were 671 patients with short stature of unknown cause evaluated by chromosomal microarray. Pathogenic/probably pathogenic CNVs were identified in 87 patients (13%). Seven recurrent CNVs, 22q11.21, 15q26, 1p36.33, Xp22.33, 17p13.3, 1q21.1, 2q24.2, were observed. They are responsible for about 40% of all pathogenic/probably pathogenic genomic imbalances found in short stature patients of unknown cause. CONCLUSION: CNVs seem to play a significant role in patients with short stature. Chromosomal microarray should be used as a diagnostic tool for evaluation of growth disorders, especially for syndromic short stature of unknown cause.


Subject(s)
Chromosomes, Human/genetics , Developmental Disabilities/genetics , Dwarfism/genetics , Polymorphism, Single Nucleotide , Child, Preschool , Female , Humans , Male , Oligonucleotide Array Sequence Analysis
20.
Eur J Endocrinol ; 171(2): 253-62, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24878679

ABSTRACT

BACKGROUND: The etiology of prenatal-onset short stature with postnatal persistence is heterogeneous. Submicroscopic chromosomal imbalances, known as copy number variants (CNVs), may play a role in growth disorders. OBJECTIVE: To analyze the CNVs present in a group of patients born small for gestational age (SGA) without a known cause. PATIENTS AND METHODS: A total of 51 patients with prenatal and postnatal growth retardation associated with dysmorphic features and/or developmental delay, but without criteria for the diagnosis of known syndromes, were selected. Array-based comparative genomic hybridization was performed using DNA obtained from all patients. The pathogenicity of CNVs was assessed by considering the following criteria: inheritance; gene content; overlap with genomic coordinates for a known genomic imbalance syndrome; and overlap with CNVs previously identified in other patients with prenatal-onset short stature. RESULTS: In 17 of the 51 patients, 18 CNVs were identified. None of these imbalances has been reported in healthy individuals. Nine CNVs, found in eight patients (16%), were categorized as pathogenic or probably pathogenic. Deletions found in three patients overlapped with known microdeletion syndromes (4q, 10q26, and 22q11.2). These imbalances are de novo, gene rich and affect several candidate genes or genomic regions that may be involved in the mechanisms of growth regulation. CONCLUSION: Pathogenic CNVs in the selected patients born SGA were common (at least 16%), showing that rare CNVs are probably among the genetic causes of short stature in SGA patients and revealing genomic regions possibly implicated in this condition.


Subject(s)
DNA Copy Number Variations/genetics , Growth Disorders/genetics , Infant, Small for Gestational Age/growth & development , Birth Weight , Child , Child, Preschool , Comparative Genomic Hybridization , Developmental Disabilities/genetics , Female , Gene Deletion , Genome-Wide Association Study , Humans , Male , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL