Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Chemistry ; 28(72): e202202771, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36302695

ABSTRACT

A designed N-heterocyclic carbene (NHC) catalyst was covalently anchored on a range of mesoporous and hierarchical supports, to study the influence of pore size in the benzoin condensation of furfural. The structural and spectroscopic characteristics of the anchored catalysts were investigated, also with the help of molecular dynamics simulations, in order to rationalize the degree of stability and recyclability of the heterogenized organocatalysts. Quantitative yields (99 %) and complete recyclability were maintained after several cycles, vindicating the design rationale.


Subject(s)
Benzoin , Furaldehyde , Benzoin/chemistry , Benzimidazoles , Molecular Dynamics Simulation , Catalysis
2.
J Chem Inf Model ; 62(1): 49-70, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34936761

ABSTRACT

The gelation of biopolymers is of great interest in the material science community and has gained increasing relevance in the past few decades, especially in the context of aerogels─lightweight open nanoporous materials. Understanding the underlying gel structure and influence of process parameters is of great importance to predict material properties such as mechanical strength. In order to improve understanding of the gelation mechanism in aqueous solution, this work presents a novel approach based on the discrete element method for the mesoscale for modeling gelation of hydrogels, similarly to an extremely coarse-grained molecular dynamics (MD) approach. For this, polymer chains are abstracted as dimer units connected by flexible bonds and interactions between units and with the environment, that is, diffusion in implicit water, are described. The model is based on Langevin dynamics and includes an implicit probabilistic ion model to capture the effects of ion availability during ion-mediated gelation. The model components are fully derived and parameterized using literature data and theoretical considerations based on a simplified representation of atomistic processes. The presented model enables investigations of the higher-scale network formation during gelation on the micrometer and millisecond scale, which are beyond classical modeling approaches such as MD. As a model system, calcium-mediated alginate gelation is investigated including the influence of ion concentration, polymer composition, polymer concentration, and molecular weight. The model is verified against numerous literature data as well as own experimental results for the corresponding Ca-alginate hydrogels using nitrogen porosimetry, NMR cryoporometry, and small-angle neutron scattering. The model reproduces both bundle size and pore size distribution in a reasonable agreement with the experiments. Overall, the modeling approach paves the way to physically motivated design of alginate gels.


Subject(s)
Alginates , Polymers , Alginates/chemistry , Biopolymers , Diffusion , Gels/chemistry , Polymers/chemistry
3.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805956

ABSTRACT

Upconversion (UC) nanoparticles characterized by red upconversion emission, particularly interesting for biological applications, have been prepared and subsequently modified by the covalent anchoring of Verteporfin (Ver), an FDA approved photosensitizer (PS) which usually exerts its photodynamic activity upon excitation with red light. ZrO2 was chosen as the platform where Yb3+ and Er3+ were inserted as the sensitizer and activator ions, respectively. Careful control of the doping ratio, along with a detailed physico-chemical characterization, was carried out. Upon functionalization with a silica shell to covalently anchor the photosensitizer, a theranostic nanoparticle was obtained whose architecture, thanks to a favorable energy level match and a uniform distribution of the PS, allowed us to trigger the photodynamic activity of Ver by upconversion, thus paving the way to the use of Photodynamic Therapy (PDT) in deep tissues, thanks to the higher penetrating power of NIR light.


Subject(s)
Nanoparticles , Photochemotherapy , Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Silicon Dioxide/chemistry , Verteporfin/therapeutic use
4.
Chemistry ; 27(14): 4723-4730, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33368657

ABSTRACT

For the first time, the co-presence in the saponite structure of luminescent EuIII and catalytic NbV metal sites was exploited for the simultaneous detection and catalytic abatement of sulfur-containing blister chemical warfare agents. Metal centers were introduced in structural positions of the saponite (in the interlayer space or inside the inorganic framework) following two different synthetic methodologies. The functionalized saponites were able to reveal the presence of a sulfur mustard simulant (2-chloroethyl)ethyl sulfide (CEES) after few seconds of contact time and more than 80 % of the substrate was catalytically decomposed after 24 h in the presence of aqueous hydrogen peroxide.

5.
Inorg Chem ; 60(14): 10749-10756, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34237936

ABSTRACT

A novel bifunctional saponite clay incorporating gadolinium (Gd3+) and europium (Eu3+) in the inorganic framework was prepared by one-pot hydrothermal synthesis. The material exhibited interesting luminescent and paramagnetic features derived from the co-presence of the lanthanide ions in equivalent structural positions. Relaxometry and photoluminescence spectroscopy shed light on the chemical environment surrounding the metal sites, the emission properties of Eu3+, and the dynamics of interactions between Gd3+ and the inner-sphere water placed in the saponite gallery. The optical and paramagnetic properties of this solid make it an attractive nanoplatform for bimodal diagnostic applications.

6.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948239

ABSTRACT

Photodynamic therapy (PDT) has been pointed out as a candidate for improving melanoma treatment. Nanotechnology application in PDT has increased its efficacy by reducing side effects. Herein, mesoporous silica nanoparticles (MSNs) conjugated with verteporfin (Ver-MSNs), in use with PDT, were administered in mice to evaluate their efficacy on lymphoangiogenesis and micrometastasis in melanoma. Melanoma was induced in mice by the subcutaneous injection of B16-F10 cells. The mice were transcutaneously treated with MSNs, Ver-MSNs, or glycerol and exposed to red light. The treatment was carried out four times until day 20. Lymphangiogenesis and micrometastasis were identified by the immunohistochemical method. Lymphoangiogenesis was halved by MSN treatment compared with the control animals, whereas the Ver-MSN treatment almost abolished it. A similar reduction was also observed in lung micrometastasis. PDT with topically administrated Ver-MSNs reduced melanoma lymphoangiogenesis and lung micrometastasis, as well as tumor mass and angiogenesis, and therefore their use could be an innovative and useful tool in melanoma clinical therapy.


Subject(s)
Lymphangiogenesis/drug effects , Melanoma, Experimental , Nanoparticles , Silicon Dioxide , Verteporfin , Administration, Topical , Animals , Female , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasm Metastasis , Porosity , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Verteporfin/chemistry , Verteporfin/pharmacology
7.
Molecules ; 26(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804572

ABSTRACT

This study focused on the application of mesoporous silica monoliths for the removal of organic pollutants. The physico-chemical textural and surface properties of the monoliths were investigated. The homogeneity of the textural properties along the entire length of the monoliths was assessed, as well as the reproducibility of the synthesis method. The adsorption properties of the monoliths for gaseous toluene, as a model of Volatile Organic Compounds (VOCs), were evaluated and compared to those of a reference meso-structured silica powder (MCM-41) of commercial origin. Silica monoliths adsorbed comparable amounts of toluene with respect to MCM-41, with better performances at low pressure. Finally, considering their potential application in water phase, the adsorption properties of monoliths toward Rhodamine B, selected as a model molecule of water soluble pollutants, were studied together with their stability in water. After 24 h of contact, the silica monoliths were able to adsorb up to the 70% of 1.5 × 10-2 mM Rhodamine B in water solution.


Subject(s)
Environmental Pollutants/isolation & purification , Gases/chemistry , Organic Chemicals/isolation & purification , Silicon Dioxide/chemistry , Volatile Organic Compounds/isolation & purification , Water Purification/methods
8.
Phys Chem Chem Phys ; 22(36): 20573-20587, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32893270

ABSTRACT

We describe theoretically the structure and properties of layered lead organohalide perovskites, considering purely bi-dimensional (2D) PbI4 layers, and quasi-2D systems where the inorganic layers are formed by more than one lead iodide sheet. The intercalating organic dications were designed to have low lying virtual orbitals (LUMO), so as to induce in the perovskite the appearance of virtual bands, localized in the organic layer, either close to the inorganic conduction band bottom or valence band top, or in some cases in the middle of the inorganic band gap. Such a feature is quite uncommon for this class of materials, and deserves attention since it allows one to tune the effective band gap of the material, possibly leading to the absorption of visible light and influencing the optical properties deeply. We discuss the effect of functional groups on the organic cations, and of the different symmetries used in geometry optimizations: a careful analysis of the contributions to the dispersion curves and band gaps was performed. The charge carrier mobility is also discussed, computing the conductivity over relaxation time and the effective masses for all the systems, with particular attention to the features related to the unusual organic intra-gap bands. All the structures were optimized at the DFT level, with inclusion of dispersion effects; dispersion curves were computed with full relativistic potentials, and the band gaps corrected for long range coulombic effects at the GW level. A semiempirical approach, based on the integration of charge carrier group velocities over a dense grid of k-points, was used to compute the conductivities and effective masses.

9.
Chemistry ; 25(42): 9938-9947, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31033059

ABSTRACT

Soft templating with siliceous surfactant is an established protocol for the synthesis of hierarchically porous silicoaluminophosphates (HP SAPOs) with improved mass transport properties. Motivated by the enhanced performance of HP SAPOs in the Beckmann rearrangement of cyclohexanone oxime to the nylon 6 precursor ϵ-caprolactam, an integrated theoretical and empirical study was carried out to investigate the catalytic potential of the siliceous mesopore network. Inelastic neutron scattering (INS) studies, in particular, provided unique insight into the substrate-framework interactions in HP (Si)AlPOs and allowed reactive species to be studied independent of the catalyst matrix. The spectroscopic (INS, FTIR spectroscopy, MAS NMR spectroscopy) and computational analyses revealed that in the organosilane-templated SAPO, the interconnectivity of micro- and mesopores permits cooperativity between their respective silanol and Brønsted acid sites that facilitates the protonation of cyclohexanone oxime in a physical mixture at ambient temperature.

10.
Chem Soc Rev ; 47(15): 5684-5739, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30014075

ABSTRACT

Understanding the structure-property relationship of solids is of utmost relevance for efficient chemical processes and technological applications in industries. This contribution reviews the concept of coupling three well-known characterization techniques (solid-state NMR, FT-IR and computational methods) for the study of solid state materials which possess 2D and 3D architectures and discusses the way it will benefit the scientific communities. It highlights the most fundamental and applied aspects of the proactive combined approach strategies to gather information at a molecular level. The integrated approach involving multiple spectroscopic and computational methods allows achieving an in-depth understanding of the surface, interfacial and confined space processes that are beneficial for the establishment of structure-property relationships. The role of ssNMR/FT-IR spectroscopic properties of probe molecules in monitoring the strength and distribution of catalytic active sites and their accessibility at the porous/layered surface is discussed. Both experimental and theoretical aspects will be considered by reporting relevant examples. This review also identifies and discusses the progress, challenges and future prospects in the field of synthesis and applications of layered and porous solids.

11.
Molecules ; 24(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823360

ABSTRACT

The organic⁻inorganic hybrid materials have attracted great attention due to their improved or unusual properties that open promising applications in different areas such as optics, electronics, energy, environment, biology, medicine and heterogeneous catalysis. Different types of silicodactyl platforms grafted on silica inorganic supports can be used to synthesize hybrid materials. A careful evaluation of the dactyly of the organic precursors, normally alkoxysilanes, and of the type of interaction with the inorganic supports is presented. In fact, depending on the hydrophilicity of the silica surface (e.g., number and density of surface silanols) as well as on the grafting conditions, the hydrolysis and condensation reaction of the silylated moieties can involve only one or two out of three alkoxysilane groups. The influence of silicodactyly in the preparation of organic-inorganic silica-based hybrids is studied by TGA, 29Si, ¹H and 13C solid-state NMR and FTIR spectroscopies, with the support of Molecular Dynamics calculations. Computational studies are used to forecast the influence of the different grafting configurations on the tendency of the silane to stick on the inorganic surface.


Subject(s)
Molecular Dynamics Simulation , Silanes/chemistry , Silicon Dioxide/chemistry , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared
12.
Chemistry ; 23(41): 9952-9961, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28574168

ABSTRACT

Using a distinctive bottom-up approach, a hierarchical silicoaluminophosphate, SAPO-34, has been synthesized using cetyl trimethylammonium bromide (CTAB) encapsulated within ordered mesoporous silica (MCM-41) that serves as both the silicon source and mesoporogen. The structural and textural properties of the hierarchical SAPO-34 were contrasted against its microporous analogue, and the nature, strength, and accessibility of the Brønsted acid sites were studied using a range of physicochemical characterization tools; notably probe-based FTIR and solid-state magic angle spinning (SS MAS) NMR spectroscopies. Whilst CO was used to study the acid properties of hierarchical SAPO-34, bulkier molecular probes (including pyridine, 2,4,6-trimethylpyridine and 2,6-di-tert-butylpyridine) allowed particular insight into the enhanced accessibility of the acid sites. The activity of the hierarchical SAPO-34 catalyst was evaluated in the industrially-relevant, acid-catalyzed Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam, under vapor-phase conditions. These catalytic investigations revealed a significant enhancement in the yield of ϵ-caprolactam using our hierarchical SAPO-34 catalyst compared to SAPO-34, MCM-41, or a mechanical mixture of these two phases. The results highlight the merits of our design strategy for facilitating enhanced mass transfer, whilst retaining favorable acid site characteristics.

13.
Chemphyschem ; 18(7): 839-849, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28029206

ABSTRACT

The interaction of water molecules with the surface of hybrid silica-based mesoporous materials is studied by 29 Si, 1 H and 13 C solid-state NMR and IR spectroscopy, with the support of ab initio calculations. The surface of aminopropyl-grafted mesoporous silica nanoparticles is studied in the dehydrated state and upon interaction with controlled doses of water vapour. Former investigations described the interactions between aminopropyl and residual SiOH groups; the present study shows the presence of hydrogen-bonded species (SiOH to NH2 ) and weakly interacting "free" aminopropyl chains with restricted mobility, together with a small amount of protonated NH3+ groups. The concentration of the last-named species increased upon interaction with water, and this indicates reversible and fast proton exchange from water molecules to a fraction of the amino groups. Herein, this is discussed and explained for the first time, by a combination of experimental and theoretical approaches.

14.
Chemphyschem ; 18(17): 2374-2380, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28654191

ABSTRACT

Determination of the molar absorption coefficients of the CH3 bending mode at ν˜ =1380 cm-1 (ϵ1380 ) of n-hexane adsorbed from the gas phase on two different dealuminated zeolites is derived by a combination of IR spectroscopy and microgravimetric analysis. High-silica zeolite Y (HSZ-Y) and zeolite ZSM-5 (with SiO2 /Al2 O3 ratios of 200 and 280, respectively) with different textural and surface features are selected to evaluate the effect of the pore structure and architecture on the value of ϵ1380 of the adsorbed n-hexane. Experimental data indicate that the molecule experiences a different adsorption environment inside zeolites; thus resulting in a significant change of the dipole moment and very different ϵ1380 values: (0.278±0.018) cm µmol-1 for HSZ-Y and (0.491±0.032) cm µmol-1 for ZSM-5. Experimental data are also supported by computational modeling, which confirms the effect of different matrices on the IR absorption intensity. This study reveals that the use of probe molecules for quantitative measurements of surface sites has to be judiciously adopted, especially if adsorption occurs in the restricted spaces of microporous materials.

15.
J Chem Phys ; 146(23): 234703, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28641434

ABSTRACT

This article describes the structure and the electronic properties of a series of layered perovskites of a general formula (A+)2(SnX4)-2 where X = I, Br and A+ is an organic cation, either formamidinium, 1-methylimidazolium, or phenylethylammonium. For each system, two conformations are considered, with eclipsed or staggered stacking of the adjacent inorganic layers. Geometry optimizations are performed at the density functional theory level with generalized gradient approximation (GGA) functional and semiempirical correction for dispersion energies; band profiles and bandgaps are computed including both spin orbit coupling (SOC) and correlation (GW) effects through an additive scheme. The theoretical procedures are validated by reproducing the experimental data of a well known 3D tin iodide perovskite. The results, combined with the calculations previously reported on PbI4 analogues, allow us to discuss the effect of cation, metal, and halide substitution in these systems and in particular to explore the possibility of changing the electronic bandgap as required by different applications. The balance of SOC and GW effects depends on the chemical nature of the studied perovskites and strongly influences the value of the simulated bandgap.

16.
Inorg Chem ; 55(17): 8576-86, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27548299

ABSTRACT

Lead(II) acetate [Pb(Ac)2, where Ac = acetate group (CH3-COO(-))2] is a very common salt with many and varied uses throughout history. However, only lead(II) acetate trihydrate [Pb(Ac)2·3H2O] has been characterized to date. In this paper, two enantiotropic polymorphs of the anhydrous salt, a novel hydrate [lead(II) acetate hemihydrate: Pb(Ac)2·(1)/2H2O], and two decomposition products [corresponding to two different basic lead(II) acetates: Pb4O(Ac)6 and Pb2O(Ac)2] are reported, with their structures being solved for the first time. The compounds present a variety of molecular arrangements, being 2D or 1D coordination polymers. A thorough thermal analysis, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was also carried out to study the behavior and thermal data of the salt and its decomposition process, in inert and oxygenated atmospheres, identifying the phases and byproducts that appear. The complex thermal behavior of lead(II) acetate is now solved, finding the existence of another hydrate, two anhydrous enantiotropic polymorphs, and some byproducts. Moreover, some of them are phosphorescent at room temperature. The compounds were studied by TGA, DSC, X-ray diffraction, and UV-vis spectroscopy.

17.
J Chem Phys ; 144(16): 164701, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27131557

ABSTRACT

A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

18.
Chemistry ; 20(35): 10921-5, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25116185

ABSTRACT

Organically modified mesoporous silica nanoparticles (MSNs) containing rose bengal (RB), a xanthene dye, were successfully synthesized. RB-modified MSNs have shown a relevant photostability and a high efficiency in the photoproduction and delivery of singlet oxygen ((1)O2), which is particularly promising for photodynamic therapy (PDT) applications. In vitro tests have evidenced that RB-MSNs are able to reduce cell proliferation in one of the most aggressive skin cancer types (SK-MEL-28) after green-light irradiation.


Subject(s)
Nanoparticles/chemistry , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Rose Bengal/chemistry , Animals , Cell Proliferation/drug effects , Cells, Cultured , Humans , Models, Molecular , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Surface Properties
19.
Langmuir ; 30(14): 4147-56, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24646367

ABSTRACT

The adsorption isotherms of CO2 in several porous aromatic frameworks (PAFs) have been simulated with Grand Canonical Monte Carlo technique, to support the synthesis of new materials for efficient carbon dioxide capture and storage. The simulations covered the 0-60 bar pressure range and were repeated at 273, 298, and 323 K. The force field employed in the simulations was optimized to fit the correct behavior of the free gas and to reproduce the CO2-phenyl interactions computed at high quantum mechanical level. PAFs are based on the diamond structure, with polyaromatic chains inserted in C-C bonds. We examined four PAF-30n (n being the number of phenyl rings in the aromatic linkers), finding that PAF-302 is overall the best performing, although PAF-301 provides higher adsorbed densities at very low pressure. The CO2 adsorption then was simulated in a number of modified PAF-302, with different functional groups (aminomethane, toluene, pyridine, and imidazole) attached to the phenyl chains; different degrees of substitution (25%, 50%, and 100% derivatized rings) were considered. The effects of functionalization and the dependence on the substitution degree are carefully discussed, to determine the most promising materials at low, intermediate, and high pressures.

20.
J Prosthet Dent ; 112(5): 1103-10, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24836536

ABSTRACT

STATEMENT OF PROBLEM: Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. PURPOSE: The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. MATERIAL AND METHODS: Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. RESULTS: Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. CONCLUSIONS: Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces.


Subject(s)
Coated Materials, Biocompatible/pharmacology , Dental Implants , Dental Materials/chemistry , Nitrogen Compounds/pharmacology , Osteoblasts/drug effects , Titanium/chemistry , Zirconium/pharmacology , 3T3 Cells , Animals , Cell Adhesion/drug effects , Cell Count , Cell Culture Techniques , Cell Proliferation/drug effects , Materials Testing , Mice , Microscopy, Electron, Scanning , Osteoblasts/ultrastructure , Pseudopodia/ultrastructure , Spectrometry, X-Ray Emission , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL