Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nature ; 576(7786): 253-256, 2019 12.
Article in English | MEDLINE | ID: mdl-31827290

ABSTRACT

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.

2.
Faraday Discuss ; 247(0): 216-226, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37466097

ABSTRACT

Direct electrocatalytic CCU routes to produce a myriad of valuable chemicals (e.g., methanol, acetic acid, ethylene, propanol, among others) will allow the chemical industry to shift away from the conventional fossil-based production. Electrofuels need to go beyond the current electroreduction of CO2 to CO, and we will here demonstrate the continuous flow electroreduction of syngas (i.e., CO and H2), which are the products from CO2-to-CO, with enhanced product selectivity (∼90% towards ethylene). To overcome current drawbacks, including bicarbonate formation that resulted in low CO2 utilisation and low C2+ product selectivity, the development of nanostructured core-shell bi-metallic electrocatalysts for direct electrochemical reduction of syngas to C2+ is proposed. Electrosynthesis of ethylene is performed in a state-of-the-art continuous flow three-compartment cell to produce ethylene (cathodic gas phase product) and acetate (cathodic liquid phase product), simultaneously.

3.
Water Resour Res ; 58(6): e2021WR030729, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35859620

ABSTRACT

Usually, models describing flow and transport for sub-surface engineering processes at the Darcy-scale do not take into consideration the effects of pore-scale flow regimes and fluid connectivity on average flow functions. In this article, we investigate the impact of wettability on pore-scale flow regimes. We show that fluid connectivity at the pore scale has a significant impact on average flow kinetics and therefore its contribution should not be ignored. Immiscible two-phase flow simulations were performed in a two-dimensional model of a Berea sandstone rock for wettability conditions ranging from moderately water-wet to strongly oil-wet. The simulation results show that wettability has a strong impact on invading fluid phase connectivity, which subsequently influences flow transport resistance. The effect of invading-phase connectivity and ganglion dynamics (GD) on two-phase displacement kinetics was also investigated. It was found that invading phase connectivity decreases away from the neutrally wet (intermediate wet) state. This study provides evidence that GD accelerate fluid flow transport kinetics during immiscible displacement processes. Lastly, the impact of wettability on fluid displacement efficiency and residual saturations was investigated. Maximum displacement efficiency occurred at the neutrally wet state.

4.
Sensors (Basel) ; 21(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833567

ABSTRACT

In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and "know-how" demanding. In this article, we describe an easy-to-implement method developed to integrate various "off-the-shelf" fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors ("pH SensorPlugs" and "FOP-MIV", respectively), which were "reversibly" attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy's law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Fiber Optic Technology
5.
Chemphyschem ; 21(3): 232-239, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31849184

ABSTRACT

Solar-fuel formation via photoelectrochemical (PEC) routes using water and CO2 as feedstock has attracted much attention. Most PEC CO2 reduction studies have been focused on the development of novel photoactive materials; however, there is still a lack of understanding of the key limiting factors of this process. In this study, the theoretical limits of Solar-to-Fuel (STF) efficiencies of single- and dual-junction photo-absorbing materials are illustrated for single-step multi-electron CO2 reduction into fuels including HCOO- , CO, CH3 OH and C2 H5 OH. It is also highlighted that STF efficiency depends on the route of two-step PEC CO2 reduction process using CH3 OH as a model fuel. Finally, it is illustrated the beneficial role of alternative strategies such as dual-junction photo-absorbing electrodes, externally applied bias and subsequent reactor chambers on the maximum theoretical efficiencies of PEC CO2 reduction.

6.
Sensors (Basel) ; 20(14)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698501

ABSTRACT

Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely "fluid flow in porous media", "flow in heterogeneous rocks and fractures", "reactive transport, solute and colloid transport", and finally "porous media characterization". In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.

7.
Faraday Discuss ; 215(0): 407-421, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-30949635

ABSTRACT

Anthropogenic CO2 is the main contributor to the increased concentration of greenhouse gases in the atmosphere, and thus utilising waste CO2 for the production of valuable chemicals is a very appealing strategy for reducing CO2 emissions. The catalytic fixation of CO2 with epoxides for the production of cyclic carbonates has gained increasing attention from the research community in search of an alternative to the homogeneous catalytic routes, which are currently being used in industry. A novel photocatalytic heterogeneous approach to generate cyclic carbonates is demonstrated in this work. Hyper-branched microstructured Ru modified TiO2 nanorods decorated with RuO2 nanoparticles, supported on fluorine-doped tin oxide (FTO) glass were fabricated for the first time and were used to catalyse the photo-generation of propylene carbonates from propylene oxides. Propylene carbonate was used as a reference for cyclic carbonates. The photo-generation of cyclic carbonates from epoxides and CO2 was carried out at a maximum temperature of 55 °C at 200 kPa in a stainless steel photoreactor with a quartz window, under solar irradiation for 6 h. The best performing photocatalyst exhibited an estimated selectivity of 83% towards propylene carbonates under the irradiation of a solar simulator.

8.
Faraday Discuss ; 215(0): 329-344, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-30942213

ABSTRACT

Utilising photoelectrochemical (PEC) devices to produce sustainable fuels from water and CO2 is a very attractive strategy, in which sunlight is used to convert the greenhouse gas (CO2) into a usable form of stored chemical energy. While significant progress has been made in the development of efficient photoactive catalysts for PEC reactions, limited efforts have been focused on the reactor design where continuous flow microfluidic PEC reactors are particular promising. In this work, a range of CuO-based thin films were used as photocathodes in a continuous flow microfluidic PEC reactor using CO2-saturated aqueous NaHCO3 solution under simulated AM 1.5 solar irradiation for up to 12 h. The highest photocurrent density obtained was for the α-Fe2O3/CuO photoelectrode yielding -1.0 mA cm-2 at 0.3 V vs. RHE and initial results indicated a solar-to-fuel (STF) efficiency of 0.48%. While the CuO, Cu2O and CuO-Cu2O photoelectrodes virtually only formed formate, the bilayer α-Fe2O3/CuO photocathode produced methanol in addition to formate indicating that combined copper and iron oxides in continuous flow microfluidic PEC cells have great potential of direct solar conversion into useful chemicals.

9.
J Environ Manage ; 189: 84-97, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28011430

ABSTRACT

The use of NaHSO4 to leach out Mg fromlizardite-rich serpentinite (in form of MgSO4) and the carbonation of CO2 (captured in form of Na2CO3 using NaOH) to form MgCO3 and Na2SO4 was investigated. Unlike ammonium sulphate, sodium sulphate can be separated via precipitation during the recycling step avoiding energy intensive evaporation process required in NH4-based processes. To determine the effectiveness of the NaHSO4/NaOH process when applied to lizardite, the optimisation of the dissolution and carbonation steps were performed using a UK lizardite-rich serpentine. Temperature, solid/liquid ratio, particle size, concentration and molar ratio were evaluated. An optimal dissolution efficiency of 69.6% was achieved over 3 h at 100 °C using 1.4 M sodium bisulphate and 50 g/l serpentine with particle size 75-150 µm. An optimal carbonation efficiency of 95.4% was achieved over 30 min at 90 °C and 1:1 magnesium:sodium carbonate molar ratio using non-synthesised solution. The CO2 sequestration capacity was 223.6 g carbon dioxide/kg serpentine (66.4% in terms of Mg bonded to hydromagnesite), which is comparable with those obtained using ammonium based processes. Therefore, lizardite-rich serpentinites represent a valuable resource for the NaHSO4/NaOH based pH swing mineralisation process.


Subject(s)
Carbon Dioxide , Carbon Sequestration , Sodium Hydroxide/chemistry , Sulfates/chemistry , Asbestos , Carbon Dioxide/chemistry , Carbonates/chemistry , Hydrogen-Ion Concentration , Particle Size , Recycling , Solubility , Temperature , United Kingdom
10.
Environ Res ; 145: 154-161, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26697809

ABSTRACT

The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO2-rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO2-rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg(2+) (68%) and it is the prevalent form in the CO2-rich exhaust flue gas (99%) with lower proportions of Hg(0) (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg(0) is more prone to be retained (95%) while Hg(2+) shows a negative efficiency capture for the whole installation. The negative Hg(2+) capture efficiencies are due to the continuous CO2-rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO2-rich flue gas. Especial attention must be paid to the role of the CO2-rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs).


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Fires , Mercury/analysis , Oxygen/chemistry , Power Plants , Equipment Design , Gases/analysis , Gases/isolation & purification , Power Plants/instrumentation
11.
Chem Soc Rev ; 43(23): 8049-80, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-24983767

ABSTRACT

Carbon dioxide (CO2) capture and sequestration includes a portfolio of technologies that can potentially sequester billions of tonnes of CO2 per year. Mineral carbonation (MC) is emerging as a potential CCS technology solution to sequester CO2 from smaller/medium emitters, where geological sequestration is not a viable option. In MC processes, CO2 is chemically reacted with calcium- and/or magnesium-containing materials to form stable carbonates. This work investigates the current advancement in the proposed MC technologies and the role they can play in decreasing the overall cost of this CO2 sequestration route. In situ mineral carbonation is a very promising option in terms of resources available and enhanced security, but the technology is still in its infancy and transport and storage costs are still higher than geological storage in sedimentary basins ($17 instead of $8 per tCO2). Ex situ mineral carbonation has been demonstrated on pilot and demonstration scales. However, its application is currently limited by its high costs, which range from $50 to $300 per tCO2 sequestered. Energy use, the reaction rate and material handling are the key factors hindering the success of this technology. The value of the products seems central to render MC economically viable in the same way as conventional CCS seems profitable only when combined with EOR. Large scale projects such as the Skyonic process can help in reducing the knowledge gaps on MC fundamentals and provide accurate costing and data on processes integration and comparison. The literature to date indicates that in the coming decades MC can play an important role in decarbonising the power and industrial sector.

12.
Sci Rep ; 14(1): 2839, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310119

ABSTRACT

Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor.

13.
Ind Eng Chem Res ; 62(45): 19084-19094, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38020790

ABSTRACT

For the first time, we demonstrate a photoelectrocatalysis technique for simultaneous surfactant pollutant degradation and green hydrogen generation using mesoporous WO3/BiVO4 photoanode under simulated sunlight irradiation. The materials properties such as morphology, crystallite structure, chemical environment, optical absorbance, and bandgap energy of the WO3/BiVO4 films are examined and discussed. We have tested the anionic type (sodium 2-naphthalenesulfonate (S2NS)) and cationic type surfactants (benzyl alkyl dimethylammonium compounds (BAC-C12)) as model pollutants. A complete removal of S2NS and BAC-C12 surfactants at 60 and 90 min, respectively, by applying 1.75 V applied potential vs RHE to the circuit, under 1 sun was achieved. An interesting competitive phenomenon for photohole utilization was observed between surfactants and adsorbed water. This led to the formation of H2O2 from water alongside surfactant degradation (anode) and hydrogen evolution (cathode). No byproducts were observed after the direct photohole mediated degradation of surfactants, implying its advantage over other AOPs and biological processes. In the cathode compartment, 82.51 µmol/cm2 and 71.81 µmol/cm2 of hydrogen gas were generated during the BAC-C12 and S2NS surfactant degradation process, respectively, at 1.75 V RHE applied potential.

14.
ACS Omega ; 8(1): 1249-1261, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643558

ABSTRACT

This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 µmol H2 g-1 h-1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)- and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight.

15.
RSC Sustain ; 1(3): 494-503, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37215582

ABSTRACT

Metal-Organic Framework (MOF)-derived TiO2, synthesised through the calcination of MIL-125-NH2, is investigated for its potential as a CO2 photoreduction catalyst. The effect of the reaction parameters: irradiance, temperature and partial pressure of water was investigated. Using a two-level design of experiments, we were able to evaluate the influence of each parameter and their potential interactions on the reaction products, specifically the production of CO and CH4. It was found that, for the explored range, the only statistically significant parameter is temperature, with an increase in temperature being correlated to enhanced production of both CO and CH4. Over the range of experimental settings explored, the MOF-derived TiO2 displays high selectivity towards CO (98%), with only a small amount of CH4 (2%) being produced. This is notable when compared to other state-of-the-art TiO2 based CO2 photoreduction catalysts, which often showcase lower selectivity. The MOF-derived TiO2 was found to have a peak production rate of 8.9 × 10-4 µmol cm-2 h-1 (2.6 µmol g-1 h-1) and 2.6 × 10-5 µmol cm-2 h-1 (0.10 µmol g-1 h-1) for CO and CH4, respectively. A comparison is made to commercial TiO2, P25 (Degussa), which was shown to have a similar activity towards CO production, 3.4 × 10-3 µmol cm-2 h-1 (5.9 µmol g-1 h-1), but a lower selectivity preference for CO (3 : 1 CH4 : CO) than the MOF-derived TiO2 material developed here. This paper showcases the potential for MIL-125-NH2 derived TiO2 to be further developed as a highly selective CO2 photoreduction catalyst for CO production.

16.
Environ Sci Technol ; 46(14): 7890-7, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22702219

ABSTRACT

An unusual and different speciation of Hg in the outgoing gaseous stream of the flue gas desulfurization (OUT-FGD) system was revealed at two Spanish power plants (PP1 and PP2) equipped with a forced oxidation wet FGD system with water recirculation to the scrubber. At PP1 and PP2, a high proportion of Hg escapes from the electrostatic precipitator in gaseous form, Hg(2+) (75-86%) being the species that enters the FGD. At PP1 Hg(0) (71%) was the prevalent Hg OUT-FGD species, whereas at PP2 Hg(2+) was the prevalent Hg OUT-FGD species in 2007 (66%) and 2008 (87%). The unusual speciation of gaseous Hg OUT-FGD and the different Hg retentions between 2007 and 2008 at PP2 were attributable to the evaporation of HgCl(2) particles from the aqueous phase of gypsum slurry in the OUT-FGD gas and the Al additive used at PP2, respectively. The Al additive induced the retention of Hg as HgS in the 2007 FGD gypsum, thus reducing gaseous emissions of Hg in the OUT-FGD gas.


Subject(s)
Coal , Mercury/isolation & purification , Power Plants , Aluminum/chemistry , Calcium Sulfate/chemistry , Gases/analysis , Phase Transition , Sulfur/isolation & purification , Temperature , Water Pollutants, Chemical/isolation & purification
17.
Ind Eng Chem Res ; 61(8): 3123-3136, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35431432

ABSTRACT

Carbon dioxide (CO2) photoreduction is a promising process for both mitigating CO2 emissions and providing chemicals and fuels. A gas-solid two-phase annular fluidized bed photoreactor (FBPR) would be preferred for this process due to its high mass-transfer rate and easy operation. However, CO2 photoreduction using the FBPR has not been widely researched to date. The Lagrangian multiphase particle-in-cell (MP-PIC) simulation with computational fluid dynamic models is a new and robust approach to explore the multiphase reaction system in the gas-solid fluidized bed. Therefore, the purpose of this paper is to investigate CO2 photoreduction in the FBPR by MP-PIC modeling to understand the intrinsic mechanism of solid flow, species mass transfer, and CO2 photoreaction. The MP-PIC models for solid flow in the FBPR were validated by the bed expansion height and bubble size. The results showed the particle stress of the Lun model, the drag of the Ergun-WenYu (Gidaspow) model, and the coefficient of restitution e = 0.95 with the wall parameters e w = 0.9 and µw = 0.6 are the best fit to the experimental empirical correlations. The MP-PIC models developed in this work proved to be better than the Eulerian two-fluid modeling in the prediction of the bed expansion height and bubble size. It was also found from the simulation results that the maximum radiation intensity is in the half reactor height area, and the photocatalytic reaction mainly occurred around the inner wall. It showed that the gas velocity and catalyst loading were two crucial operating parameters to control the process. The results reported here can provide guidance for the operation and reactor design of the CO2 photoreduction process.

18.
Nanoscale ; 14(17): 6349-6356, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35411888

ABSTRACT

Propylene carbonates are important organic solvents and feedstocks for different applications, including synthesis of polymers and Li-batteries. The generation of propylene carbonate utilising anthropogenic CO2 and renewable solar energy offers an alternative sustainable process with a closed loop carbon cycle. The development of microstructured photocatalysts with desired properties, including high degree of product selectivity, wide range of optical properties, and maximised conversion yield, plays an important role for effective production of propylene carbonate from CO2. A hierachical hollow core with a double shell of TiO2-x-Cu2O-CuO was fabricated using the versatile solvothermal-microwave synthesis method. The fabricated sample revealed effective cascading of photogenerated electrons and holes that promoted the conversion of propylene carbonate (i.e., 1.6 wt%) under 1 Sun irradiation.

20.
J Environ Manage ; 92(10): 2810-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21763061

ABSTRACT

Adsorption is one of the most promising technologies for reducing CO(2) emissions and at present several different types of sorbents are being investigated. The use of sorbents obtained from low-cost and abundant precursors (i.e. solid wastes) appears an attractive strategy to adopt because it will contribute to a reduction not only in operational costs but also in the amount of waste that is dumped and burned in landfills every year. Following on from previous studies by the authors, in this work several carbon-based adsorbents were developed from different carpet wastes (pre-consumer and post-consumer wastes) by chemical activation with KOH at various activation temperatures (600-900 °C) and KOH:char impregnation ratios (0.5:1 to 4:1). The prepared materials were characterised by chemical analysis and gas adsorption (N(2), -196 °C; CO(2), 0 °C), and tested for CO(2) adsorption at temperatures of 25 and 100 °C. It was found that both the type of precursor and the conditions of activation (i.e. impregnation ratios, and activation temperatures), had a huge influence on the microporosity of the resultant samples and their CO(2) capture capacities. The carbon-based adsorbent that presented the maximum CO(2) capture capacities at 25 and 100 °C (13.8 wt.% and 3.1 wt.%, respectively), was prepared from a pre-consumer carpet waste and was activated at 700 °C using a KOH:char impregnation ratio of 1:1. This sample showed the highest narrow microporosity volume (0.47 cm(3) g(-1)), thus confirming that only pores of less than 1 nm are effective for CO(2) adsorption at atmospheric pressure.


Subject(s)
Air Pollutants/chemistry , Carbon Dioxide/chemistry , Carbon/chemistry , Conservation of Natural Resources/methods , Floors and Floorcoverings , Recycling , Adsorption , Hydroxides/chemistry , Potassium Compounds/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL