Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 21(4): 381-387, 2020 04.
Article in English | MEDLINE | ID: mdl-32205881

ABSTRACT

Protein ubiquitination regulates protein stability and modulates the composition of signaling complexes. A20 is a negative regulator of inflammatory signaling, but the molecular mechanisms involved are ill understood. Here, we generated Tnfaip3 gene-targeted A20 mutant mice bearing inactivating mutations in the zinc finger 7 (ZnF7) and ZnF4 ubiquitin-binding domains, revealing that binding to polyubiquitin is essential for A20 to suppress inflammatory disease. We demonstrate that a functional ZnF7 domain was required for recruiting A20 to the tumor necrosis factor receptor 1 (TNFR1) signaling complex and to suppress inflammatory signaling and cell death. The combined inactivation of ZnF4 and ZnF7 phenocopied the postnatal lethality and severe multiorgan inflammation of A20-deficient mice. Conditional tissue-specific expression of mutant A20 further revealed the key role of ubiquitin-binding in myeloid and intestinal epithelial cells. Collectively, these results demonstrate that the anti-inflammatory and cytoprotective functions of A20 are largely dependent on its ubiquitin-binding properties.


Subject(s)
Inflammation/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Epithelial Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Polyubiquitin/metabolism , Protein Binding/physiology , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Zinc Fingers/physiology
2.
Trends Immunol ; 44(8): 628-643, 2023 08.
Article in English | MEDLINE | ID: mdl-37357102

ABSTRACT

Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.


Subject(s)
Apoptosis , Signal Transduction , Animals , Humans , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases , Cell Death , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Inflammation/pathology , Mammals
3.
Proc Natl Acad Sci U S A ; 119(32): e2122854119, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35914153

ABSTRACT

There are over 250,000 international treaties that aim to foster global cooperation. But are treaties actually helpful for addressing global challenges? This systematic field-wide evidence synthesis of 224 primary studies and meta-analysis of the higher-quality 82 studies finds treaties have mostly failed to produce their intended effects. The only exceptions are treaties governing international trade and finance, which consistently produced intended effects. We also found evidence that impactful treaties achieve their effects through socialization and normative processes rather than longer-term legal processes and that enforcement mechanisms are the only modifiable treaty design choice with the potential to improve the effectiveness of treaties governing environmental, human rights, humanitarian, maritime, and security policy domains. This evidence synthesis raises doubts about the value of international treaties that neither regulate trade or finance nor contain enforcement mechanisms.

4.
J Biol Chem ; 299(6): 104749, 2023 06.
Article in English | MEDLINE | ID: mdl-37100284

ABSTRACT

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Subject(s)
Antiviral Agents , COVID-19 , Mpox (monkeypox) , Vaccinia , Animals , Mice , Antiviral Agents/pharmacology , Mpox (monkeypox)/drug therapy , SARS-CoV-2/drug effects , Vaccinia/drug therapy , Vaccinia virus/drug effects
5.
EMBO Rep ; 23(12): e55233, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36194667

ABSTRACT

The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.


Subject(s)
NF-kappa B , Humans , Animals , Mice
6.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37735876

ABSTRACT

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Subject(s)
Genetic Vectors , Neoplasms , RNA Interference , Genetic Vectors/genetics , Genetic Therapy , Gene Transfer Techniques , Neoplasms/genetics , Neoplasms/therapy
7.
Global Health ; 20(1): 66, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39187834

ABSTRACT

The Bellagio Group for Accelerating AMR Action met in April 2024 to develop the ambitious but achievable 1-10-100 unifying goals to galvanize global policy change and investments for antimicrobial resistance mitigation: 1 Health; 10 million lives saved; and 100% sustainable access to effective antimicrobials. High profile political goals such as the Paris Agreement's objective to keep global warming well below 2° Celsius compared to pre-industrial levels, UNAIDS' 90-90-90 goal, and the Sustainable Development Goals challenge global norms, direct attention towards relevant activities, and serve an energizing function to motivate action over an extended period of time. The 1-10-100 unifying goals propose to unite the world through a One Health approach to safeguard human health, animal welfare, agrifood systems, and the environment from the emergence and spread of drug-resistant microbes and infections; save over 10 million lives by 2040 through concerted efforts to prevent and appropriately treat infections while preserving the vital systems and services that depend on sustained antimicrobial effectiveness; and commit to ensuring that antimicrobials are available and affordable for all, used prudently, and secured for the future through innovation. Compared to existing technical targets, these unifying goals offer advantages of focusing on prevention, encouraging multisectoral action and collaboration, promoting health equity, recognizing the need for innovation, and integrating with Sustainable Development Goals. By committing to 1 Health, 10 million lives saved, and 100% sustainable access to effective antimicrobials, we can protect lives and livelihoods today and safeguard options for tomorrow.


Subject(s)
Global Health , Humans , Drug Resistance, Microbial , Goals
8.
Eur Respir J ; 61(4)2023 04.
Article in English | MEDLINE | ID: mdl-36549711

ABSTRACT

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Mice , Animals , Lung , Cell Death , Inflammation/metabolism , Mice, Inbred C57BL , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
9.
Trends Immunol ; 41(5): 421-435, 2020 05.
Article in English | MEDLINE | ID: mdl-32241683

ABSTRACT

A20 is a potent anti-inflammatory molecule, and mutations in TNFAIP3, the gene encoding A20, are associated with a wide panel of inflammatory pathologies, both in human and mouse. The anti-inflammatory properties of A20 are commonly attributed to its ability to suppress inflammatory NF-κB signaling by functioning as a ubiquitin-editing enzyme. However, A20 also protects cells from death, independently of NF-κB regulation, and recent work has demonstrated that cell death may drive some of the inflammatory conditions caused by A20 deficiency. Adding to the fact that the protective role of A20 does not primarily rely on its catalytic activities, these findings shed new light on A20 biology.


Subject(s)
Inflammation , NF-kappa B , Humans , Animals , Mice , NF-kappa B/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Inflammation/metabolism , Signal Transduction , Cell Death , Anti-Inflammatory Agents
10.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35526097

ABSTRACT

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Imidazoles , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Imidazoles/pharmacology , Mice , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , United States , United States Food and Drug Administration
11.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34687845

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , T-Lymphocytes
12.
Mol Cell ; 60(1): 63-76, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26344099

ABSTRACT

TNF is a master pro-inflammatory cytokine. Activation of TNFR1 by TNF can result in both RIPK1-independent apoptosis and RIPK1 kinase-dependent apoptosis or necroptosis. These cell death outcomes are regulated by two distinct checkpoints during TNFR1 signaling. TNF-mediated NF-κB-dependent induction of pro-survival or anti-apoptotic molecules is a well-known late checkpoint in the pathway, protecting cells from RIPK1-independent death. On the other hand, the molecular mechanism regulating the contribution of RIPK1 to cell death is far less understood. We demonstrate here that the IKK complex phosphorylates RIPK1 at TNFR1 complex I and protects cells from RIPK1 kinase-dependent death, independent of its function in NF-κB activation. We provide in vitro and in vivo evidence that inhibition of IKKα/IKKß or its upstream activators sensitizes cells to death by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We therefore report on an unexpected, NF-κB-independent role for the IKK complex in protecting cells from RIPK1-dependent death downstream of TNFR1.


Subject(s)
I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Caspase 8/metabolism , Cell Death , Cell Line , Embryo, Mammalian/cytology , Fas-Associated Death Domain Protein/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Phosphorylation , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology
13.
Eur J Public Health ; 33(5): 851-856, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37496387

ABSTRACT

BACKGROUND: Population-level factors within and beyond the scope of the World Health Organization's (WHO) MPOWER policy package have significant impacts on smoking rates. However, no synthesis of the existing evidence exists. This systematic review identifies population-level factors that influence cigarette smoking rates in European countries. METHODS: We searched the ProQuest database collection for original, peer-reviewed quantitative evaluations that investigated the effects of population-level exposures on smoking rates in European countries. Of the 3122 studies screened, 62 were ultimately included in the review. A standardized data extraction form was used to identify key characteristics of each study including publication year, years evaluated, countries studied, population characteristics, study design, data sources, analytic methods, exposure studied, relevant covariates and effects on tobacco smoking outcomes. RESULTS: One hundred and fifty-five population-level exposures were extracted from the 62 studies included in the review, 99 of which were related to WHO MPOWER measures. An additional 56 exposures fell into eight policy realms: economic crises, education policy, macro-economic factors, non-MPOWER tobacco regulations, population welfare, public policy, sales to minors and unemployment rates. About one-half of the MPOWER exposures affected smoking rates (55/99) and did so in an overwhelmingly positive way (55/55). Over three-quarters of the non-MPOWER exposures were associated with statistically significant changes in smoking outcomes (43/56), with about two-thirds of these exposures leading to a decrease in smoking (29/43). CONCLUSIONS: Population-level factors that fall outside of the WHO's MPOWER measures are an understudied research area. The impacts of these factors on tobacco control should be considered by policymakers.

14.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674550

ABSTRACT

Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.


Subject(s)
Extracellular Vesicles , Virus Diseases , Viruses , Humans , Extracellular Vesicles/metabolism , Virus Diseases/metabolism , Antiviral Agents/metabolism
15.
J Immunol ; 204(4): 775-787, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31900335

ABSTRACT

Immunogenic cell death (ICD) occurs when a dying cell releases cytokines and damage-associated molecular patterns, acting as adjuvants, and expresses Ags that induce a specific antitumor immune response. ICD is studied mainly in the context of regulated cell death pathways, especially caspase-mediated apoptosis marked by endoplasmic reticulum stress and calreticulin exposure and, more recently, also in relation to receptor-interacting protein kinase-driven necroptosis, whereas unregulated cell death like accidental necrosis is nonimmunogenic. Importantly, the murine cancer cell lines used in ICD studies often express virally derived peptides that are recognized by the immune system as tumor-associated Ags. However, it is unknown how different cell death pathways may affect neoepitope cross-presentation and Ag recognition of cancer cells. We used a prophylactic tumor vaccination model and observed that both apoptotic and necroptotic colon carcinoma CT26 cells efficiently immunized mice against challenge with a breast cancer cell line that expresses the same immunodominant tumor Ag, AH1, but only necroptotic CT26 cells would mount an immune response against CT26-specific neoepitopes. By CRISPR/Cas9 genome editing, we knocked out AH1 and saw that only necroptotic CT26 cells were still able to protect mice against tumor challenge. Hence, in this study, we show that endogenous AH1 tumor Ag expression can mask the strength of immunogenicity induced by different cell death pathways and that upon knockout of AH1, necroptosis was more immunogenic than apoptosis in a prophylactic tumor vaccination model. This work highlights necroptosis as a possible preferred ICD form over apoptosis in the treatment of cancer.


Subject(s)
Antigens, Neoplasm/immunology , Apoptosis/immunology , Immunodominant Epitopes/immunology , Necroptosis/immunology , Neoplasms, Experimental/immunology , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C
16.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33578036

ABSTRACT

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/pharmacology , Biological Assay , Lectins/pharmacology , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Asparagine/chemistry , Asparagine/metabolism , Binding Sites , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Genes, Reporter , Glycosylation/drug effects , HEK293 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization/drug effects , COVID-19 Drug Treatment
17.
Chem Soc Rev ; 50(24): 13587-13608, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34786575

ABSTRACT

This review highlights recent developments in the field of biodegradable polymeric materials intended to replace non-degradable conventional plastics, focusing on studies from the last ten years involving the stereoselective ring-opening polymerization of cyclic esters. This encompasses exciting advances in both catalyst design and monomer scope. Notably, the last decade has seen the emergence of metal-free stereocontrolled ROP for instance, as well as the synthesis and stereocontrolled polymerization of new types of chiral monomers. This study will emphasize recent stereoselective polymerization catalysts and chiral monomers and will focus on stereocontrol quantification, the mechanisms of stereocontrol and their differentiation if reported and studied for a specific catalyst system.


Subject(s)
Polyesters , Polymers , Catalysis , Esters , Polymerization
18.
Popul Health Metr ; 19(1): 4, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526039

ABSTRACT

BACKGROUND: Smartphones have rapidly become an important marker of wealth in low- and middle-income countries, but international household surveys do not regularly gather data on smartphone ownership and these data are rarely used to calculate wealth indices. METHODS: We developed a cross-sectional survey module delivered to 3028 households in rural northwest Burkina Faso to measure the effects of this absence. Wealth indices were calculated using both principal components analysis (PCA) and polychoric PCA for a base model using only ownership of any cell phone, and a full model using data on smartphone ownership, the number of cell phones, and the purchase of mobile data. Four outcomes (household expenditure, education level, and prevalence of frailty and diabetes) were used to evaluate changes in the composition of wealth index quintiles using ordinary least squares and logistic regressions and Wald tests. RESULTS: Households that own smartphones have higher monthly expenditures and own a greater quantity and quality of household assets. Expenditure and education levels are significantly higher at the fifth (richest) socioeconomic status (SES) quintile of full model wealth indices as compared to base models. Similarly, diabetes prevalence is significantly higher at the fifth SES quintile using PCA wealth index full models, but this is not observed for frailty prevalence, which is more prevalent among lower SES households. These effects are not present when using polychoric PCA, suggesting that this method provides additional robustness to missing asset data to measure underlying latent SES by proxy. CONCLUSIONS: The lack of smartphone data can skew PCA-based wealth index performance in a low-income context for the top of the socioeconomic spectrum. While some PCA variants may be robust to the omission of smartphone ownership, eliciting smartphone ownership data in household surveys is likely to substantially improve the validity and utility of wealth estimates.


Subject(s)
Poverty , Smartphone , Cross-Sectional Studies , Family Characteristics , Humans , Socioeconomic Factors
19.
Exp Cell Res ; 389(2): 111913, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32084392

ABSTRACT

Since epigenetic modifications are a key driver for cellular differentiation, the regulation of these modifications is tightly controlled. Interestingly, recent studies have revealed metabolic regulation for epigenetic modifications in pluripotent cells. As metabolic differences are prominent between naive (pre-implantation) and primed (post-implantation) pluripotent cells, the epigenetic changes regulated by metabolites has become an interesting topic of analysis. In this review we discuss how combinatorial metabolic activities drive the developmental progression through early pluripotent stages.


Subject(s)
Blastocyst/cytology , Chromatin/genetics , Embryonic Stem Cells/cytology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Metabolome , Pluripotent Stem Cells/cytology , Animals , Blastocyst/metabolism , Cell Differentiation , Embryonic Stem Cells/metabolism , Humans , Pluripotent Stem Cells/metabolism
20.
Am J Respir Crit Care Med ; 201(11): 1358-1371, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32105156

ABSTRACT

Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown.Objectives: To determine whether necroptosis contributes to RSV bronchiolitis pathogenesis via HMGB1 (high mobility group box 1) release.Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice.Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGB1 translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life.Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma.


Subject(s)
Bronchiolitis/virology , Epithelial Cells/metabolism , Epithelial Cells/pathology , HMGB1 Protein/metabolism , Necroptosis , Respiratory Mucosa/cytology , Respiratory Syncytial Virus Infections/metabolism , Animals , Child, Preschool , Humans , Infant , Mice , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL