Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Small ; 19(19): e2207057, 2023 05.
Article in English | MEDLINE | ID: mdl-36775954

ABSTRACT

Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Wound Healing , Oxidative Stress , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
2.
Mol Pharm ; 20(3): 1531-1548, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36763486

ABSTRACT

The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.


Subject(s)
Cell-Penetrating Peptides , Glioblastoma , Nanoparticles , Humans , Methotrexate , Silicon Dioxide/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Brain , Drug Delivery Systems/methods , Porosity
3.
Phys Chem Chem Phys ; 24(4): 2491-2503, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35023509

ABSTRACT

For large-scale graphene applications, such as the production of polymer-graphene nanocomposites, exfoliated graphene oxide (GO) and its reduced form (rGO) are presently considered to be very suitable starting materials, showing enhanced chemical reactivity with respect to pristine graphene, in addition to suitable electronic properties (i.e., tunable band gap). Among other chemical processes, a suitable way to obtain surface decoration of graphene is through a direct one-step Diels-Alder (DA) reaction, e.g. through the use of dienophile or diene moieties. However, the feasibility and extent of decoration largely depends on the specific graphene microstructure that in the case of rGO sheets is not easy to control and generally presents a high degree of inhomogeneity owing to various on-plane functionalization (e.g., epoxide and hydroxyl groups) or in-plane lattice defects. In an effort to gain some insights into the covalent functionalization of variably reduced GO samples, we present a combined experimental and theoretical study on the DA cycloaddition reaction of maleimide, a dienophile functional unit well-suited for chemical conjugation of polymers and macromolecules. In particular, we considered both mildly and strongly reduced GOs. Using thermogravimetry, Raman and X-Ray photoelectron spectroscopy, and elemental analysis we show evidence of variable chemical reactivity of rGO as a function of the residual oxygen content. Moreover, from quantum mechanical calculations carried out at the DFT level on different graphene reaction sites, we provide a more detailed molecular view to interpret experimental findings and to assess the reactivity series of different graphene modifications.

4.
Opt Express ; 29(21): 33602-33614, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809170

ABSTRACT

Quantum cascade lasers (QCLs) represent a most promising compact source at terahertz (THz) frequencies, but efficiency of their continuous wave (CW) operation still needs to be improved to achieve large-scale exploitation. Here, we demonstrate highly efficient operation of a subwavelength microcavity laser consisting of two evanescently coupled whispering gallery microdisk resonators. Exploiting a dual injection scheme for the laser cavity, single mode CW vertical emission at 3.3 THz is obtained at 10 K with 6.4 mA threshold current and 145 mW/A slope efficiency up to 320 µW emitted power measured in quasi-CW mode. The tuning of the laser emission directionality is also obtained by independently varying the pumping strength between the microdisks. By connecting the resonators through a suspended gold bridge, the laser out-coupling efficiency in the vertical direction is strongly enhanced. Owing to the high brightness, low-power consumption and CW operation, the proposed microcavity laser design could allow the realization of high-performance CW THz QCLs ready for massive parallelization.

5.
Mater Today (Kidlington) ; 47: 206-222, 2021.
Article in English | MEDLINE | ID: mdl-36338772

ABSTRACT

Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.

6.
Macromol Rapid Commun ; 42(1): e2000426, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33089579

ABSTRACT

The perylene bisimide derivative Paliogen Black (P-black) is proposed as a new chromogenic probe that shows visible (vis) and near-infrared (NIR) responses after mechanical solicitations of host linear low-density polyethylene (LLDPE) films. P-black is reported to display strong absorption in the vis spectrum and unusual reflective and cooling features in the NIR region. Uniaxial deformation of the 2.5, 5, and 10 wt% P-black/LLDPE films yields a dichroic absorption under polarized light with color variations attributed by the computational analysis to the distinct anisotropic behavior of the transition dipole moments of P-black chromophores. When LLDPE films are deformed, P-black aggregates reduce their size from ≈30-40 µm to ≈5-10 µm that, in turn, causes reflectivity losses of about 30-40% at the maximum elongation. This gives rise to warming of 5-6 °C of the locally oriented film placed in contact with a black substrate under the illumination with an IR lamp for 5 s. These features combined with the high sensitivity of the vis-NIR response toward mechanical solicitations render P-black as a new solution to detect uniaxial deformations of plastic films through both optical and thermal outputs.


Subject(s)
Polyethylene , Plastics
7.
Sensors (Basel) ; 21(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567724

ABSTRACT

The development of dry, ultra-conformable and unperceivable temporary tattoo electrodes (TTEs), based on the ink-jet printing of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on top of commercially available temporary tattoo paper, has gained increasing attention as a new and promising technology for electrophysiological recordings on skin. In this work, we present a TTEs epidermal sensor for real time monitoring of respiration through transthoracic impedance measurements, exploiting a new design, based on the application of soft screen printed Ag ink and magnetic interlink, that guarantees a repositionable, long-term stable and robust interconnection of TTEs with external "docking" devices. The efficiency of the TTE and the proposed interconnection strategy under stretching (up to 10%) and over time (up to 96 h) has been verified on a dedicated experimental setup and on humans, fulfilling the proposed specific application of transthoracic impedance measurements. The proposed approach makes this technology suitable for large-scale production and suitable not only for the specific use case presented, but also for real time monitoring of different bio-electric signals, as demonstrated through specific proof of concept demonstrators.


Subject(s)
Electrodes , Respiration , Tattooing , Epidermis , Humans , Monitoring, Physiologic , Skin
8.
Small ; 15(40): e1902687, 2019 10.
Article in English | MEDLINE | ID: mdl-31402578

ABSTRACT

Direct laser writing methods based on two-photon polymerization (2PP) are powerful tools for the on-demand printing of precise and complex 3D architectures at the micro and nanometer scale. While much progress was made to increase the resolution and the feature size throughout the years, by carefully designing a material, one can confer specific functional properties to the printed structures thus making them appealing for peculiar and novel applications. This Review summarizes the state-of-the-art of functional resins and photoresists used in 2PP, discussing both the range of material functions available and the methods used to prepare them, highlighting advantages and disadvantages of different classes of materials in achieving certain properties.

9.
Small ; 14(6)2018 02.
Article in English | MEDLINE | ID: mdl-29239532

ABSTRACT

The investigation of the crossing of exogenous substances through the blood-brain barrier (BBB) is object of intensive research in biomedicine, and one of the main obstacles for reliable in vitro evaluations is represented by the difficulties at the base of developing realistic models of the barrier, which could resemble as most accurately as possible the in vivo environment. Here, for the first time, a 1:1 scale, biomimetic, and biohybrid BBB model is proposed. Microtubes inspired to the brain capillaries were fabricated through two-photon lithography and used as scaffolds for the co-culturing of endothelial-like bEnd.3 and U87 glioblastoma cells. The constructs show the maturation of tight junctions, good performances in terms of hindering dextran diffusion through the barrier, and a satisfactory trans-endothelial electrical resistance. Moreover, a mathematical model is developed, which assists in both the design of the 3D microfluidic chip and its characterization. Overall, these results show the effective formation of a bioinspired cellular barrier based on microtubes reproducing brain microcapillaries to scale. This system will be exploited as a realistic in vitro model for the investigation of BBB crossing of nanomaterials and drugs, envisaging therapeutic and diagnostic applications for several brain pathologies, including brain cancer.


Subject(s)
Biomimetics , Blood-Brain Barrier , Models, Biological , Photons , Animals , Brain/blood supply , Brain Neoplasms/blood supply , Brain Neoplasms/pathology , Capillaries/pathology , Cell Line, Tumor , Coculture Techniques , Glioblastoma/blood supply , Glioblastoma/pathology , Humans , Microfluidic Analytical Techniques
10.
Nanomedicine ; 14(7): 2421-2432, 2018 10.
Article in English | MEDLINE | ID: mdl-28552646

ABSTRACT

Piezoelectric films of poly(vinylidenedifluoride-trifluoroethylene) (P(VDF-TrFE)) and of P(VDF-TrFE)/boron nitride nanotubes (BNNTs) were prepared by cast-annealing and used for SaOS-2 osteoblast-like cell culture. Films were characterized in terms of surface and bulk features, and composite films demonstrated enhanced piezoresponse compared to plain polymeric films (d31 increased by ~80%). Osteogenic differentiation was evaluated in terms of calcium deposition, collagen I secretion, and transcriptional levels of marker genes (Alpl, Col1a1, Ibsp, and Sparc) in cells either exposed or not to ultrasounds (US); finally, a numerical model suggested that the induced voltage (~20-60 mV) is suitable for cell stimulation. Although preliminary, our results are extremely promising and encourage the use of piezoelectric P(VDF-TrFE)/BNNT films in bone tissue regeneration.


Subject(s)
Boron Compounds/pharmacology , Cell Differentiation , Electric Stimulation , Nanotubes/chemistry , Osteosarcoma/pathology , Polyvinyls/chemistry , Ultrasonography , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Boron Compounds/chemistry , Cell Survival , Humans , Nanotubes/radiation effects , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Tumor Cells, Cultured
11.
Biochim Biophys Acta ; 1860(4): 775-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26825772

ABSTRACT

BACKGROUND: Boron nitride nanotubes (BNNTs) represent a new opportunity for drug delivery and clinical therapy. The present work has the objective to investigate pectin-coated BNNTs (P-BNNTs) for their biocompatibility on macrophage cultures, since these cells are among the first components of the immune system to interact with administered nanoparticles. METHODS: As first step, the potential toxicity of P-BNNTs is verified in terms of proliferation, oxidative stress induction and apoptosis/necrosis phenomena. Thereafter, the modulation of immune cell response following P-BNNT exposure is evaluated at gene and protein level, in particular focusing on cytokine release. Finally, P-BNNT internalization is assessed through transmission electron microscopy and confocal microscopy. RESULTS: The results proved that P-BNNTs are not toxic for macrophages up to 50 µg/ml after 24 h of incubation. The cytokine expression is not affected by P-BNNT administration both at gene and protein level. Moreover, P-BNNTs are internalized by macrophages without impairments of the cell structures. CONCLUSIONS: Collected data suggest that P-BNNTs cause neither adverse effects nor inflammation processes in macrophages. GENERAL SIGNIFICANCE: These findings represent the first and fundamental step in immune compatibility evaluation of BNNTs, mandatory before any further pre-clinical testing.


Subject(s)
Boron Compounds/chemistry , Coated Materials, Biocompatible/chemistry , Macrophages/metabolism , Materials Testing , Nanotubes/chemistry , Pectins/chemistry , Animals , Cell Line , Cytokines/biosynthesis , Cytokines/immunology , Gene Expression Regulation/immunology , Macrophages/cytology , Macrophages/immunology , Mice
12.
Biomed Microdevices ; 19(3): 51, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28577265

ABSTRACT

Free-standing films with sub-micrometric thickness, composed of soft polymers and functional nanostructures are promising candidates for many potential applications in the biomedical field, such as reduced port abdominal surgery. In this work, freely suspended poly(L-lactic acid) nanofilms with controlled morphology embedding superparamagnetic iron oxide nanoparticles were fabricated by spin-coating deposition. The mechanical properties of magnetic nanofilms were investigated by Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) test. Our results show that these freely suspended nanocomposite nanofilms are highly flexible and deformable, with Young's moduli of few GPa. Since they can be handled in liquid with syringes, a quantitative description of the nanofilms behavior during the manipulation with clinically applicable needles has been also provided. These magnetic nanofilms, remotely controllable by external electromagnetic fields, have potential applications in minimally invasive surgery as injectable nanopatches on inner organs wall. Graphical abstract ᅟ.


Subject(s)
Magnetite Nanoparticles/chemistry , Membranes, Artificial , Polyesters/chemistry
13.
Biochim Biophys Acta Gen Subj ; 1861(2): 386-395, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27864151

ABSTRACT

BACKGROUND: The design of efficient nerve conduits able to sustain the axonal outgrowth and its guidance towards appropriate targets is of paramount importance in nerve tissue engineering. METHODS: In this work, we propose the preparation of highly aligned nanocomposite fibers of gelatin/cerium oxide nanoparticles (nanoceria), prepared by electrospinning. Nanoceria are powerful self-regenerative antioxidant nanomaterials, that behave as strong reactive oxygen species scavengers, and among various beneficial effects, they have been proven to inhibit the cell senescence and to promote the neurite sprouting. RESULTS: After a detailed characterization of the developed substrates, they have been tested on neuron-like SH-SY5Y cells, demonstrating strong antioxidant properties and beneficial multi-cue effects in terms of neurite development and alignment. CONCLUSIONS: Obtained findings suggest efficiency of the proposed substrates in providing combined topographical stimuli and antioxidant effects to cultured cells. GENERAL SIGNIFICANCE: Proposed nanocomposite scaffolds represent a promising approach for nerve tissue engineering and regenerative medicine.


Subject(s)
Antioxidants/chemistry , Cerium/chemistry , Gelatin/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Nerve Regeneration/drug effects , Antioxidants/administration & dosage , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Cells, Cultured , Cerium/administration & dosage , Gelatin/administration & dosage , Humans , Nanocomposites/administration & dosage , Nanofibers/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nerve Tissue/drug effects , Nerve Tissue/metabolism , Neurites/drug effects , Neurites/metabolism , Neurons/drug effects , Neurons/metabolism , Reactive Oxygen Species/metabolism , Regenerative Medicine/methods , Tissue Engineering/methods , Tissue Scaffolds
14.
Nature ; 536(7617): 400-1, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27558058

Subject(s)
Robotics , Humans
15.
Nanotechnology ; 27(23): 232001, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27145888

ABSTRACT

Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.


Subject(s)
Barium/chemistry , Ceramics , Metal Nanoparticles , Nanomedicine , Titanium
16.
Biochim Biophys Acta ; 1840(1): 495-506, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24135455

ABSTRACT

BACKGROUND: Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS: We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS: Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS: Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE: This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.


Subject(s)
Antioxidants/metabolism , Biomarkers/metabolism , Cerium/chemistry , Gene Expression Profiling , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Oxidative Stress/genetics , Animals , Oligonucleotide Array Sequence Analysis , PC12 Cells , RNA, Messenger/genetics , Rats , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
17.
Biomed Microdevices ; 17(2): 46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25797705

ABSTRACT

In mechanobiology the study of cell response to mechanical stimuli is fundamental, and the involved processes (i.e., mechanotransduction) need to be investigated by interfacing (mechanically and electrically) with the cells in dynamic and non-invasive natural-like conditions. In this work, we present a novel soft, stretchable and conductive biointerface that allows both cell mechanical stimulation and dynamic impedance recording. The biointerface stretchability and conductivity, jointly to the biocompatibility and transparency needed to perform cell culture studies, were obtained by exploiting the formation of wrinkles on the surface of a 90 nm thick conductive layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on a pre-stretched 130 µm thick poly(dimethylsiloxane) (PDMS) substrate. Cell adhesion and proliferation of SH-SY5Y human neuroblastoma cells were evaluated, and cell differentiation on the corrugated surface was assessed. We demonstrate how the biointerface remains conductive when applying uniaxial strain up to 10%, and when cell culturing is performed. Finally, a reduction of about 30% of the relative impedance variation signal was measured, with respect to the control, as a result of the mechanical stimulation of cells.


Subject(s)
Cell Biology/instrumentation , Mechanotransduction, Cellular , Biophysics/instrumentation , Biophysics/methods , Cell Adhesion , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Dimethylpolysiloxanes , Equipment Design , Fluorescent Antibody Technique , Humans , Polystyrenes , Surface Properties , Thiophenes
18.
Nanomedicine ; 11(7): 1725-34, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26003299

ABSTRACT

Obesity is a worldwide pathological condition that strongly impairs human health, and, to date, no effective therapy against excessive fat accumulation has been found yet. Since overweight correlates with an increased oxidative stress, our aim is to investigate the antioxidant effects of cerium oxide nanoparticles (nanoceria) as a potential pharmaceutical approach for the treatment of obesity. Nanoceria were tested both in vitro and in vivo; they were proven to interfere with the adipogenic pathway by reducing the mRNA transcription of genes involved in adipogenesis, and by hindering the triglycerides accumulation in 3T3-L1 pre-adipocytes. Nanoceria, intraperitonally injected in Wistar rats, did not show appreciable toxic effects, but instead efficiently contributed in reducing the weight gain and in lowering the plasma levels of insulin, leptin, glucose and triglycerides. FROM THE CLINICAL EDITOR: Obesity is now a significant problem worldwide. To date, obesity surgery remains the best treatment for weight reduction. Much research has been conducted to discover an effective pharmacological treatment against obesity. In this article, the authors continued their previous work in studying the anti-adipogenic properties of cerium oxide nanoparticles. The antioxidant effects of nanoceria were studied in in vitro and in vivo experiments. It was shown in animal model that nanoceria could reduce body weight effectively. These promising results may provide a novel treatment in the clinical setting in the future.


Subject(s)
Cerium/administration & dosage , Chemistry, Pharmaceutical , Nanoparticles/administration & dosage , Obesity/drug therapy , Adipogenesis/drug effects , Animals , Humans , Insulin/blood , Male , Obesity/blood , Obesity/pathology , Oxidative Stress/drug effects , RNA, Messenger/biosynthesis , Rats , Weight Gain/drug effects
19.
Pharm Res ; 31(11): 2952-62, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24805277

ABSTRACT

PURPOSE: Cerium oxide nanoparticles (nanoceria, NC) have extraordinary antioxidant activity that made them suitable as a therapeutic agent for several diseases where reactive oxygen species (ROS) act by impairing the normal redox balance. Among different functions, it has been proven that ROS are cellular messengers involved in the adipogenesis: we thus investigated the implication of NC administration in the potential inhibition of adipogenic differentiation of mesenchymal stem cells (MSCs) used as a model of adipogenesis. METHODS: We evaluated cytotoxic effects and adipogenic maturation of mesenchymal stem cells following in vitro NC administration, both at gene and at phenotype level. RESULTS: Overall, our results demonstrated that NC efficiently inhibit the maturation of MSCs toward adipocytes owing to their ability to reduce the production of the ROS necessary during adipogenesis. CONCLUSIONS: These findings, even if preliminary, represent an important step toward the potential pharmaceutical application of NC in the treatment of obesity.


Subject(s)
Adipogenesis/radiation effects , Cerium/pharmacology , Mesenchymal Stem Cells/drug effects , Nanoparticles/administration & dosage , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Rats , Reactive Oxygen Species/metabolism
20.
Micromachines (Basel) ; 15(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399003

ABSTRACT

The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades. In recent years, additive manufacturing has risen to the forefront of this evolution as the most prominent method to fabricate complex 3D structures. In this review, we discuss the rapid 3D manufacturing techniques that have emerged and how they have enabled a great leap in microrobotic applications. The arrival of smart materials with inherent functionalities has propelled microrobots to great complexity and complex applications. We focus on which materials are important for actuation and what the possibilities are for supplying the required energy. Furthermore, we provide an updated view of a new generation of microrobots in terms of both materials and fabrication technology. While two-photon lithography may be the state-of-the-art technology at the moment, in terms of resolution and design freedom, new methods such as two-step are on the horizon. In the more distant future, innovations like molecular motors could make microscale robots redundant and bring about nanofabrication.

SELECTION OF CITATIONS
SEARCH DETAIL