Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Gastro Hep Adv ; 3(3): 385-395, 2024.
Article in English | MEDLINE | ID: mdl-39131151

ABSTRACT

Background and Aims: Survival rates for esophageal squamous cell carcinoma (ESCC) are extremely low due to the late diagnosis of most cases. An understanding of the early molecular processes that lead to ESCC may facilitate opportunities for early diagnosis; however, these remain poorly defined. Tylosis with esophageal cancer (TOC) is a rare syndrome associated with a high lifetime risk of ESCC and germline mutations in RHBDF2, encoding iRhom2. Using TOC as a model of ESCC predisposition, this study aimed to identify early-stage transcriptional changes in ESCC development. Methods: Esophageal biopsies were obtained from control and TOC individuals, the latter undergoing surveillance endoscopy, and adjacent diagnostic biopsies were graded as having no dysplasia or malignancy. Bulk RNA-Seq was performed, and findings were compared with sporadic ESCC vs normal RNA-Seq datasets. Results: Multiple transcriptional changes were identified in TOC samples, relative to controls, and many were detected in ESCC. Accordingly, pathway analyses predicted an enrichment of cancer-associated processes linked to cellular proliferation and metastasis, and several transcription factors were predicted to be associated with TOC and ESCC, including negative enrichment of GRHL2. Subsequently, a filtering strategy revealed 22 genes that were significantly dysregulated in both TOC and ESCC. Moreover, Keratin 17, which was upregulated in TOC and ESCC, was also found to be overexpressed at the protein level in 'normal' TOC esophagus tissue. Conclusion: Transcriptional changes occur in TOC esophagus prior to the onset of dysplasia, many of which are associated with ESCC. These findings support the utility of TOC to help reveal the early molecular processes that lead to sporadic ESCC.

2.
Article in English | MEDLINE | ID: mdl-27169376

ABSTRACT

The implementation of the Syrian hamster embryo cell transformation assay (SHE CTA) into test batteries and its relevance in predicting carcinogenicity has been long debated. Despite prevalidation studies to ensure reproducibility and minimise the subjective nature of the assay's endpoint, an underlying mechanistic and molecular basis supporting morphological transformation (MT) as an indicator of carcinogenesis is still missing. We found that only 20% of benzo(a)pyrene-induced MT clones immortalised suggesting that, alone, the MT phenotype is insufficient for senescence bypass. From a total of 12 B(a)P- immortalised MT lines, inactivating p53 mutations were identified in 30% of clones, and the majority of these were consistent with the potent carcinogen's mode of action. Expression of p16 was commonly silenced or markedly reduced with extensive promoter methylation observed in 45% of MT clones, while Bmi1 was strongly upregulated in 25% of clones. In instances where secondary events to MT appeared necessary for senescence bypass, as evidenced by a transient cellular crisis, clonal growth correlated with monoallelic deletion of the CDKN2A/B locus. The findings further implicate the importance of p16 and p53 pathways in regulating senescence while providing a molecular evaluation of SHE CTA -derived variant MT clones induced by benzo(a)pyrene.


Subject(s)
Carcinogens/toxicity , Cell Transformation, Neoplastic/genetics , Animals , Cell Line , Cricetinae , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Mesocricetus
SELECTION OF CITATIONS
SEARCH DETAIL