Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 539
Filter
Add more filters

Publication year range
1.
Nature ; 600(7889): 450-455, 2021 12.
Article in English | MEDLINE | ID: mdl-34912089

ABSTRACT

Early to Middle Miocene sea-level oscillations of approximately 40-60 m estimated from far-field records1-3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene4,5. Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72-17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.


Subject(s)
Ice Cover , Sea Level Rise/history , Seawater/analysis , Antarctic Regions , Climate Models , History, Ancient
2.
Nature ; 574(7777): 237-241, 2019 10.
Article in English | MEDLINE | ID: mdl-31578526

ABSTRACT

Earth is heading towards a climate that last existed more than three million years ago (Ma) during the 'mid-Pliocene warm period'1, when atmospheric carbon dioxide concentrations were about 400 parts per million, global sea level oscillated in response to orbital forcing2,3 and peak global-mean sea level (GMSL) may have reached about 20 metres above the present-day value4,5. For sea-level rise of this magnitude, extensive retreat or collapse of the Greenland, West Antarctic and marine-based sectors of the East Antarctic ice sheets is required. Yet the relative amplitude of sea-level variations within glacial-interglacial cycles remains poorly constrained. To address this, we calibrate a theoretical relationship between modern sediment transport by waves and water depth, and then apply the technique to grain size in a continuous 800-metre-thick Pliocene sequence of shallow-marine sediments from Whanganui Basin, New Zealand. Water-depth variations obtained in this way, after corrections for tectonic subsidence, yield cyclic relative sea-level (RSL) variations. Here we show that sea level varied on average by 13 ± 5 metres over glacial-interglacial cycles during the middle-to-late Pliocene (about 3.3-2.5 Ma). The resulting record is independent of the global ice volume proxy3 (as derived from the deep-ocean oxygen isotope record) and sea-level cycles are in phase with 20-thousand-year (kyr) periodic changes in insolation over Antarctica, paced by eccentricity-modulated orbital precession6 between 3.3 and 2.7 Ma. Thereafter, sea-level fluctuations are paced by the 41-kyr period of cycles in Earth's axial tilt as ice sheets stabilize on Antarctica and intensify in the Northern Hemisphere3,6. Strictly, we provide the amplitude of RSL change, rather than absolute GMSL change. However, simulations of RSL change based on glacio-isostatic adjustment show that our record approximates eustatic sea level, defined here as GMSL unregistered to the centre of the Earth. Nonetheless, under conservative assumptions, our estimates limit maximum Pliocene sea-level rise to less than 25 metres and provide new constraints on polar ice-volume variability under the climate conditions predicted for this century.


Subject(s)
Seawater/analysis , Carbon Dioxide/analysis , Foraminifera/chemistry , Geologic Sediments/chemistry , History, Ancient , Ice Cover/chemistry , New Zealand , Oceans and Seas , Oxygen Isotopes/analysis , Partial Pressure
3.
Emerg Infect Dis ; 30(8): 1580-1588, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043398

ABSTRACT

Wastewater surveillance is an effective way to track the prevalence of infectious agents within a community and, potentially, the spread of pathogens between jurisdictions. We conducted a retrospective wastewater surveillance study of the 2022-23 influenza season in 2 communities, Detroit, Michigan, USA, and Windsor-Essex, Ontario, Canada, that form North America's largest cross-border conurbation. We observed a positive relationship between influenza-related hospitalizations and the influenza A virus (IAV) wastewater signal in Windsor-Essex (ρ = 0.785; p<0.001) and an association between influenza-related hospitalizations in Michigan and the IAV wastewater signal for Detroit (ρ = 0.769; p<0.001). Time-lagged cross correlation and qualitative examination of wastewater signal in the monitored sewersheds showed the peak of the IAV season in Detroit was delayed behind Windsor-Essex by 3 weeks. Wastewater surveillance for IAV reflects regional differences in infection dynamics which may be influenced by many factors, including the timing of vaccine administration between jurisdictions.


Subject(s)
Influenza A virus , Influenza, Human , Wastewater , Ontario/epidemiology , Humans , Michigan/epidemiology , Influenza, Human/epidemiology , Wastewater/virology , Retrospective Studies , Seasons , History, 21st Century , Hospitalization
4.
J Great Lakes Res ; 50(3)2024 Jun.
Article in English | MEDLINE | ID: mdl-39050868

ABSTRACT

Lake Erie algal bloom discussions have historically focused on cyanobacteria, with foundational "blooms like it hot" and "high nutrient" paradigms considered as primary drivers behind cyanobacterial bloom success. Yet, recent surveys have rediscovered winter-spring diatom blooms, introducing another key player in the Lake Erie eutrophication and algal bloom story which has been historically overlooked. These blooms (summer vs. winter) have been treated as solitary events separated by spatial and temporal gradients. However, new evidence suggests they may not be so isolated, linked in a manner that manifests as an algal bloom cycle. Equally notable are the emerging reports of cyanobacterial blooms in cold and/or oligotrophic freshwaters, which have been interpreted by some as shifts in classical bloom paradigms. These emerging bloom reports have led many to ask "what is a bloom?". Furthermore, questioning classic paradigms has caused others to wonder if we are overlooking additional factors which constrain bloom success. In light of emerging data and ideas, we revisited foundational concepts within the context of Lake Erie algal blooms and derived five key take-aways: 1) Additional bloom-formers (diatoms) need to be included in Lake Erie algal discussions, 2) The term "bloom" must be reinforced with a clear definition and quantitative metrics for each event, 3) Algal blooms should not be studied solitarily, 4) Shifts in physiochemical conditions serve as an alternative interpretation to potential shifts in ecological paradigms, 5) Additional factors which constrain bloom success and succession (i.e., pH and light) require consideration.

5.
Bull Environ Contam Toxicol ; 113(3): 30, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179721

ABSTRACT

Components of the lower food web (mussels, Caridina and Omena) were collected from stations from Winam Gulf, Lake Victoria, Kenya in 2022 and 2023 to analyze for stable isotopes and total mercury (THg). Temporal comparisons were made with data generated for the same species in 1998. Values of δ15N in mussels and Caridina were similar (6.89‰ vs. 6.78 ± 0.13‰), while Omena occupied an elevated trophic position (9.97 ± 0.24‰) with minor shifts in δ15N over time. All species had elevated δ13C values in 2022-2023 versus 1998 supportive of enhanced eutrophication in the Gulf. THg concentrations exhibited modest spatial differences between sites (< 2.6 fold), but not between Caridina and Omena. Larger temporal differences were apparent relative to spatial patterns with THg concentrations decreasing in study species by 2.8 to 4.1-fold between years. An exposure assessment indicated that Omena, commonly found in local markets, can be consumed up to 0.74 kg/month without generating excess THg exposures.


Subject(s)
Environmental Monitoring , Food Chain , Lakes , Mercury , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Mercury/analysis , Animals , Kenya , Lakes/chemistry , Bivalvia , Nitrogen Isotopes/analysis , Spatio-Temporal Analysis , Carbon Isotopes/analysis
6.
Ann Oncol ; 34(9): 813-825, 2023 09.
Article in English | MEDLINE | ID: mdl-37330052

ABSTRACT

BACKGROUND: The isolation of cell-free DNA (cfDNA) from the bloodstream can be used to detect and analyze somatic alterations in circulating tumor DNA (ctDNA), and multiple cfDNA-targeted sequencing panels are now commercially available for Food and Drug Administration (FDA)-approved biomarker indications to guide treatment. More recently, cfDNA fragmentation patterns have emerged as a tool to infer epigenomic and transcriptomic information. However, most of these analyses used whole-genome sequencing, which is insufficient to identify FDA-approved biomarker indications in a cost-effective manner. PATIENTS AND METHODS: We used machine learning models of fragmentation patterns at the first coding exon in standard targeted cancer gene cfDNA sequencing panels to distinguish between cancer and non-cancer patients, as well as the specific tumor type and subtype. We assessed this approach in two independent cohorts: a published cohort from GRAIL (breast, lung, and prostate cancers, non-cancer, n = 198) and an institutional cohort from the University of Wisconsin (UW; breast, lung, prostate, bladder cancers, n = 320). Each cohort was split 70%/30% into training and validation sets. RESULTS: In the UW cohort, training cross-validated accuracy was 82.1%, and accuracy in the independent validation cohort was 86.6% despite a median ctDNA fraction of only 0.06. In the GRAIL cohort, to assess how this approach performs in very low ctDNA fractions, training and independent validation were split based on ctDNA fraction. Training cross-validated accuracy was 80.6%, and accuracy in the independent validation cohort was 76.3%. In the validation cohort where the ctDNA fractions were all <0.05 and as low as 0.0003, the cancer versus non-cancer area under the curve was 0.99. CONCLUSIONS: To our knowledge, this is the first study to demonstrate that sequencing from targeted cfDNA panels can be utilized to analyze fragmentation patterns to classify cancer types, dramatically expanding the potential capabilities of existing clinically used panels at minimal additional cost.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Prostatic Neoplasms , Male , Humans , Circulating Tumor DNA/genetics , Mutation , Prostatic Neoplasms/genetics , Cell-Free Nucleic Acids/genetics , Gene Expression Profiling , Biomarkers, Tumor/genetics
7.
J Water Health ; 21(9): 1264-1276, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37756194

ABSTRACT

Recent MPOX viral resurgences have mobilized public health agencies around the world. Recognizing the significant risk of MPOX outbreaks, large-scale human testing, and immunization campaigns have been initiated by local, national, and global public health authorities. Recently, traditional clinical surveillance campaigns for MPOX have been complemented with wastewater surveillance (WWS), building on the effectiveness of existing wastewater programs that were built to monitor SARS-CoV-2 and recently expanded to include influenza and respiratory syncytial virus surveillance in wastewaters. In the present study, we demonstrate and further support the finding that MPOX viral fragments agglomerate in the wastewater solids fraction. Furthermore, this study demonstrates that the current, most commonly used MPOX assays are equally effective at detecting low titers of MPOX viral signal in wastewaters. Finally, MPOX WWS is shown to be more effective at passively tracking outbreaks and/or resurgences of the disease than clinical testing alone in smaller communities with low human clinical case counts of MPOX.

8.
Ann Oncol ; 33(3): 340-346, 2022 03.
Article in English | MEDLINE | ID: mdl-34958894

ABSTRACT

BACKGROUND: Vaccination is an important preventive health measure to protect against symptomatic and severe COVID-19. Impaired immunity secondary to an underlying malignancy or recent receipt of antineoplastic systemic therapies can result in less robust antibody titers following vaccination and possible risk of breakthrough infection. As clinical trials evaluating COVID-19 vaccines largely excluded patients with a history of cancer and those on active immunosuppression (including chemotherapy), limited evidence is available to inform the clinical efficacy of COVID-19 vaccination across the spectrum of patients with cancer. PATIENTS AND METHODS: We describe the clinical features of patients with cancer who developed symptomatic COVID-19 following vaccination and compare weighted outcomes with those of contemporary unvaccinated patients, after adjustment for confounders, using data from the multi-institutional COVID-19 and Cancer Consortium (CCC19). RESULTS: Patients with cancer who develop COVID-19 following vaccination have substantial comorbidities and can present with severe and even lethal infection. Patients harboring hematologic malignancies are over-represented among vaccinated patients with cancer who develop symptomatic COVID-19. CONCLUSIONS: Vaccination against COVID-19 remains an essential strategy in protecting vulnerable populations, including patients with cancer. Patients with cancer who develop breakthrough infection despite full vaccination, however, remain at risk of severe outcomes. A multilayered public health mitigation approach that includes vaccination of close contacts, boosters, social distancing, and mask-wearing should be continued for the foreseeable future.


Subject(s)
COVID-19 , Neoplasms , COVID-19 Vaccines , Humans , Neoplasms/complications , SARS-CoV-2 , Vaccination
9.
Health Qual Life Outcomes ; 20(1): 170, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575437

ABSTRACT

BACKGROUND: Fatigue is a common symptom in hospitalized and non-hospitalized patients recovering from COVID-19, but no fatigue measurement scales or questions have been validated in these populations. The objective of this study was to perform validity assessments of the fatigue severity scale (FSS) and two single-item screening questions (SISQs) for fatigue in patients recovering from COVID-19. METHODS: We examined patients ≥ 28 days after their first SARS-CoV-2 infection who were hospitalized for their acute illness, as well as non-hospitalized patients referred for persistent symptoms. Patients completed questionnaires through 1 of 4 Post COVID-19 Recovery Clinics in British Columbia, Canada. Construct validity was assessed by comparing FSS scores to quality of life and depression measures. Two SISQs were evaluated based on the ability to classify fatigue (FSS score ≥ 4). RESULTS: Questionnaires were returned in 548 hospitalized and 546 non-hospitalized patients, with scores computable in 96.4% and 98.2% of patients respectively. Cronbach's alpha was 0.96 in both groups. The mean ± SD FSS score was 4.4 ± 1.8 in the hospitalized and 5.2 ± 1.6 in the non-hospitalized group, with 62.5% hospitalized and 78.9% non-hospitalized patients classified as fatigued. Ceiling effects were 7.6% in the hospitalized and 16.1% in non-hospitalized patients. FSS scores negatively correlated with EQ-5D scores in both groups (Spearman's rho - 0.6 in both hospitalized and non-hospitalized; p < 0.001) and were higher among patients with a positive PHQ-2 depression screen (5.4 vs. 4.0 in hospitalized and 5.9 vs. 4.9 in non-hospitalized; p < 0.001). An SISQ asking whether there was "fatigue present" had a sensitivity of 70.6% in hospitalized and 83.2% in non-hospitalized patients; the "always feeling tired" SISQ, had a sensitivity of 70.5% and 89.6% respectively. CONCLUSIONS: Fatigue was common and severe in patients referred for post COVID-19 assessment. Overall, the FSS is suitable for measuring fatigue in these patients, as there was excellent data quality, strong internal consistency, and construct validity. However, ceiling effects may be a limitation in the non-hospitalized group. SISQs had good sensitivity for identifying clinically relevant fatigue in non-hospitalized patients but only moderate sensitivity in the hospitalized group, indicating that there were more false negatives.


Subject(s)
COVID-19 , Quality of Life , Humans , Reproducibility of Results , Severity of Illness Index , COVID-19/complications , SARS-CoV-2 , Surveys and Questionnaires , Psychometrics
10.
Artif Life ; 28(2): 240-263, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35148365

ABSTRACT

Discrete gene regulatory networks (GRNs) play a vital role in the study of robustness and modularity. A common method of evaluating the robustness of GRNs is to measure their ability to regulate a set of perturbed gene activation patterns back to their unperturbed forms. Usually, perturbations are obtained by collecting random samples produced by a predefined distribution of gene activation patterns. This sampling method introduces stochasticity, in turn inducing dynamicity. This dynamicity is imposed on top of an already complex fitness landscape. So where sampling is used, it is important to understand which effects arise from the structure of the fitness landscape, and which arise from the dynamicity imposed on it. Stochasticity of the fitness function also causes difficulties in reproducibility and in post-experimental analyses. We develop a deterministic distributional fitness evaluation by considering the complete distribution of gene activity patterns, so as to avoid stochasticity in fitness assessment. This fitness evaluation facilitates repeatability. Its determinism permits us to ascertain theoretical bounds on the fitness, and thus to identify whether the algorithm has reached a global optimum. It enables us to differentiate the effects of the problem domain from those of the noisy fitness evaluation, and thus to resolve two remaining anomalies in the behaviour of the problem domain of Espinosa-Soto and A. Wagner (2010). We also reveal some properties of solution GRNs that lead them to be robust and modular, leading to a deeper understanding of the nature of the problem domain. We conclude by discussing potential directions toward simulating and understanding the emergence of modularity in larger, more complex domains, which is key both to generating more useful modular solutions, and to understanding the ubiquity of modularity in biological systems.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Algorithms , Reproducibility of Results
11.
Appl Environ Microbiol ; 87(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33310722

ABSTRACT

Planktothrix agardhii dominates the cyanobacterial harmful algal bloom community in Sandusky Bay, Lake Erie (USA) from May through September. This filamentous cyanobacterium is host to a known obligate parasite; the chytrid Rhizophydium sp. During the 2018 bloom season, by utilizing dilution and single filament isolation techniques, 7 chytrid and 12 P. agardhii strains were isolated from Sandusky Bay. These 7 chytrids and a selection of P. agardhii hosts were then characterized with respect to infection rates. Infections by the isolated chytrids were specific to Planktothrix planktonic species and were not found on other filamentous cyanobacterial taxa present in the bay (Aphanizomenon sp. and Cuspidothrix sp.). Even among the potential P. agardhii host strains, individual chytrid isolates had different degrees of infectivity and showed preference for different host isolates, suggesting possible ecological partitioning even within the same sample population. Examining mechanisms of chytrid pathogenesis, the zoospores displayed a swarming pattern to attack and fracture the host filament and create new infection sites at the trichome termini. Infections by these parasitic chytrids also led to a release of intracellular microcystin toxins from the hosts. Additionally, infections were dependent on media type, highlighting the importance of media choice on experimental outcomes. Media in which chytrid swarming was observed closely matched the ionic strength of the natural environment. Understanding pathogenesis by fungal parasites will assist future efforts aimed at determining environmental factors favoring loss mechanisms for Planktothrix agardhii-dominated blooms.IMPORTANCE Whereas many studies have focused on the factors contributing to the establishment and persistence of cyanobacterial harmful algal blooms (cHABs), few studies have examined bloom pathogenesis. Chytrid fungi infect cyanobacteria and stimulate food web interactions through manipulation of previously hard to digest filaments and the release of nutrients to support heterotrophic microbes. Specifically, chytrids infective on filamentous Planktothrix agardhii exhibit a species-specific infection that fragments trichomes into shorter units that can be consumed more easily by grazers. Chytrid zoospores also serve as a high-quality food source for the lower food web. Understanding host-pathogen relationships and mechanisms of pathogenesis on cyanobacteria will be necessary to effectively model the ecology of cHABs.

12.
Public Health ; 195: 54-56, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34052508

ABSTRACT

OBJECTIVES: Hesitance and resistance to COVID-19 vaccination poses a serious challenge to achieving adequate vaccine uptake in the general population. Cross-sectional data from the early months of the pandemic indicates that approximately one-third of adults in multiple nations are hesitant or resistant to a vaccine for COVID-19. Using longitudinal data, we tracked changes in attitudes to COVID-19 vaccination during the pandemic. STUDY DESIGN: This is a quantitative, longitudinal design. METHOD: Nationally representative samples of the adult general population of the Republic of Ireland (N = 1041) and the United Kingdom (N = 2025) were assessed for their attitudes towards COVID-19 vaccination at three points from March to August 2020. RESULTS: Statistically significant increases in resistance to COVID-19 vaccination were observed in Irish (from 9.5% to 18.1%) and British (from 6.2% to 10%) adults. CONCLUSION: Resistance to vaccination has significantly increased in two European nations as the pandemic has progressed. Growing resistance to COVID-19 vaccination will pose a challenge to public health officials responsible for ensuring sufficient vaccine coverage.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Pandemics/prevention & control , Vaccination Refusal , Vaccination/psychology , Adult , Cross-Sectional Studies , Ethnicity , Humans , Ireland , Male , Middle Aged , Public Health , SARS-CoV-2 , United Kingdom
13.
Appl Environ Microbiol ; 86(22)2020 10 28.
Article in English | MEDLINE | ID: mdl-32859600

ABSTRACT

Western Lake Erie (Laurentian Great Lakes) is prone to annual cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis spp. that often yield microcystin toxin concentrations exceeding the federal EPA recreational contact advisory of 8 µg liter-1 In August 2014, microcystin levels were detected in finished drinking water above the World Health Organization 1.0 µg liter-1 threshold for consumption, leading to a 2-day disruption in the supply of drinking water for >400,000 residents of Toledo, Ohio (USA). Subsequent metatranscriptomic analysis of the 2014 bloom event provided evidence that release of toxin into the water supply was likely caused by cyanophage lysis that transformed a portion of the intracellular microcystin pool into the dissolved fraction, rendering it more difficult to eliminate during treatment. In August 2019, a similar increase in dissolved microcystins at the Toledo water intake was coincident with a viral lytic event caused by a phage consortium different in composition from what was detected following the 2014 Toledo water crisis. The most abundant viral sequence in metagenomic data sets was a scaffold from a putative member of the Siphoviridae, distinct from the Ma-LMM01-like Myoviridae that are typically documented to occur in western Lake Erie. This study provides further evidence that viral activity in western Lake Erie plays a significant role in transformation of microcystins from the particulate to the dissolved fraction and therefore requires monitoring efforts from local water treatment plants. Additionally, identification of multiple lytic cyanophages will enable the development of a quantitative PCR toolbox to assess viral activity during cHABs.IMPORTANCE Viral attack on cHABs may contribute to changes in community composition during blooms, as well as bloom decline, yet loss of bloom biomass does not eliminate the threat of cHAB toxicity. Rather, it may increase risks to the public by delivering a pool of dissolved toxin directly into water treatment utilities when the dominating Microcystis spp. are capable of producing microcystins. Detecting, characterizing, and quantifying the major cyanophages involved in lytic events will assist water treatment plant operators in making rapid decisions regarding the pool of microcystins entering the plant and the corresponding best practices to neutralize the toxin.


Subject(s)
Eutrophication , Lakes/microbiology , Microcystins/metabolism , Siphoviridae/physiology , Lakes/virology , Ohio , Siphoviridae/classification , Siphoviridae/isolation & purification
14.
Limnol Oceanogr ; 65(12): 2866-2882, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33707786

ABSTRACT

The Maumee River is the primary source for nutrients fueling seasonal Microcystis-dominated blooms in western Lake Erie's open waters though such blooms in the river are infrequent. The river also serves as source water for multiple public water systems and a large food services facility in northwest Ohio, USA. On 20 September 2017, an unprecedented bloom was reported in the Maumee River estuary within the Toledo metropolitan area, which triggered a recreational water advisory. Here we (1) explore physical drivers likely contributing to the bloom's occurrence, and (2) describe the toxin concentration and bacterioplankton taxonomic composition. A historical analysis using ten-years of seasonal river discharge, water level, and local wind data identified two instances when high-retention conditions occurred over ≥10 days in the Maumee River estuary: in 2016 and during the 2017 bloom. Observation by remote sensing imagery supported the advection of cyanobacterial cells into the estuary from the lake during 2017 and the lack of an estuary bloom in 2016 due to a weak cyanobacterial bloom in the lake. A rapid-response survey during the 2017 bloom determined levels of the cyanotoxins, specifically microcystins, in excess of recreational contact limits at sites within the lower 20 km of the river while amplicon sequencing found these sites were dominated by Microcystis. These results highlight the need to broaden our understanding of physical drivers of cyanobacterial blooms within the interface between riverine and lacustrine systems, particularly as such blooms are expected to become more prominent in response to a changing climate.

15.
Health Res Policy Syst ; 18(1): 51, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32450919

ABSTRACT

BACKGROUND: Conducting research in partnership with stakeholders (e.g. policy-makers, practitioners, organisations, patients) is a promising and popular approach to improving the implementation of research findings in policy and practice. This study aimed to identify the principles, strategies, outcomes and impacts reported in different types of reviews of research partnerships in order to obtain a better understanding of the scope of the research partnership literature. METHODS: This review of reviews is part of a Coordinated Multicenter Team approach to synthesise the research partnership literature with five conceptually linked literature reviews. The main research question was 'What principles, strategies, outcomes and impacts are reported in different types of research partnership approaches?'. We included articles describing a literature review of research partnerships using a systematic search strategy. We used an adapted version of the Revised Assessment of Multiple Systematic Reviews tool to assess quality. Nine electronic databases were searched from inception to April 2018. Principles, strategies, outcomes and impacts were extracted from the included reviews and analysed using direct content analysis. RESULTS: We included 86 reviews using terms describing several research partnership approaches (e.g. community-based participatory research, participatory research, integrated knowledge translation). After the analyses, we synthesised 17 overarching principles and 11 overarching strategies and grouped them into one of the following subcategories: relationship between partners; co-production of knowledge; meaningful stakeholder engagement; capacity-building, support and resources; communication process; and ethical issues related to the collaborative research activities. Similarly, we synthesised 20 overarching outcomes and impacts on researchers, stakeholders, the community or society, and the research process. CONCLUSIONS: This review of reviews is the first that presents overarching principles, strategies, outcomes and impacts of research partnerships. This review is unique in scope as we synthesised literature across multiple research areas, involving different stakeholder groups. Our findings can be used as a first step to guide the initiation and maintenance of research partnerships and to create a classification system of the key domains of research partnerships, which may improve reporting consistency in the research partnership literature. TRIAL REGISTRATION: This study is registered via Open Science Framework: https://doi.org/10.17605/OSF.IO/GVR7Y.


Subject(s)
Cooperative Behavior , Research Design , Review Literature as Topic , Stakeholder Participation , Administrative Personnel , Capacity Building , Communication , Community-Based Participatory Research/methods , Ethics, Research , Health Personnel , Health Services Research , Humans , Organizations , Patient Participation , Research Personnel , Systematic Reviews as Topic , Translational Research, Biomedical
16.
Dysphagia ; 35(5): 762-772, 2020 10.
Article in English | MEDLINE | ID: mdl-31792616

ABSTRACT

Objective measures of tongue strength and endurance are used to assess lingual weakness and fatigue, and may have significant clinical value for dysphagia management. Recent studies investigating age and gender effects on tongue strength in children are limited by small sample sizes. The current study investigated age and gender effects on tongue strength with a larger sample size, and collected preliminary normative data for a paediatric population. This study also investigated the reliability of tongue endurance measures in children using a modified method, which has not previously been investigated. Using a cross-sectional design, this study examined tongue strength and endurance in 119 children aged 6 to 11 years, with no history of speech sound disorders, oro-motor deficits, dysphagia or cognitive impairment. Measures were collected using the Iowa Oral Performance Instrument. Children participated in two sessions, 45 min and 10 min in duration. Tongue strength was found to significantly increase with age (p < 0.001), while no gender effects were found. Modified tongue endurance measures involved using only one measure of maximal tongue strength to set parameters for tongue endurance scores. Despite this modification, data did not reach acceptable test-retest reliability, ICC = 0.68, p < 0.001; however, reliability improved from previous studies. These findings provide normative data for tongue strength, as a basis to compare individuals, and highlights the need for more reliable protocols for measuring tongue endurance. Normative data was collected from city-dwelling Australian children.


Subject(s)
Deglutition , Muscle Strength , Australia , Child , Cross-Sectional Studies , Humans , Reproducibility of Results , Tongue
18.
Celest Mech Dyn Astron ; 130(2): 12, 2018.
Article in English | MEDLINE | ID: mdl-33184531

ABSTRACT

This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill-Clohessy-Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The Δ v requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.

19.
Environ Sci Technol ; 51(12): 6745-6755, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28535339

ABSTRACT

Annual cyanobacterial blooms dominated by Microcystis have occurred in western Lake Erie (U.S./Canada) during summer months since 1995. The production of toxins by bloom-forming cyanobacteria can lead to drinking water crises, such as the one experienced by the city of Toledo in August of 2014, when the city was rendered without drinking water for >2 days. It is important to understand the conditions and environmental cues that were driving this specific bloom to provide a scientific framework for management of future bloom events. To this end, samples were collected and metatranscriptomes generated coincident with the collection of environmental metrics for eight sites located in the western basin of Lake Erie, including a station proximal to the water intake for the city of Toledo. These data were used to generate a basin-wide ecophysiological fingerprint of Lake Erie Microcystis populations in August 2014 for comparison to previous bloom communities. Our observations and analyses indicate that, at the time of sample collection, Microcystis populations were under dual nitrogen (N) and phosphorus (P) stress, as genes involved in scavenging of these nutrients were being actively transcribed. Targeted analysis of urea transport and hydrolysis suggests a potentially important role for exogenous urea as a nitrogen source during the 2014 event. Finally, simulation data suggest a wind event caused microcystin-rich water from Maumee Bay to be transported east along the southern shoreline past the Toledo water intake. Coupled with a significant cyanophage infection, these results reveal that a combination of biological and environmental factors led to the disruption of the Toledo water supply. This scenario was not atypical of reoccurring Lake Erie blooms and thus may reoccur in the future.


Subject(s)
Microcystis , Water Supply , Canada , Cyanobacteria , Eutrophication , Lakes
20.
Environ Microbiol ; 18(6): 1704-19, 2016 06.
Article in English | MEDLINE | ID: mdl-25712272

ABSTRACT

Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions.


Subject(s)
Bacteria/growth & development , Diatoms/growth & development , Ice Cover/microbiology , Lakes/microbiology , Phytoplankton/growth & development , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biomass , Climate Change , Diatoms/classification , Diatoms/genetics , Ecosystem , Phytoplankton/classification , Phytoplankton/genetics , Phytoplankton/isolation & purification , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL