Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Med Chem ; 39(26): 5119-36, 1996 Dec 20.
Article in English | MEDLINE | ID: mdl-9005255

ABSTRACT

Phospholipases (PLAs) produce rate-limiting precursors in the biosynthesis of various types of biologically active lipids involved in inflammatory processes. Increased levels of human nonpancreatic secretory phospholipase A2 (hnps-PLA2) have been detected in several pathological conditions. An inhibitor of this enzyme could have therapeutic utility. A broad screening program was carried out to identify chemical structures which could inhibit hnps-PLA2. One of the lead compounds generated by the screening program was 5-methoxy-2-methyl-1-(phenylmethyl)-1H-indole-3-acetic acid (13a). We describe the syntheses, structure--activity relationships, and pharmacological activities of a series of indole-3-acetamides and related compounds derived from this lead. This SAR was undertaken with the aid of X-ray crystal structures of complexes between the inhibitors and hnps-PLA2 which were of great value in directing the SAR.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoleacetic Acids/pharmacology , Phospholipases A/antagonists & inhibitors , Animals , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Guinea Pigs , Humans , In Vitro Techniques , Indoleacetic Acids/chemistry , Lung/drug effects , Lung/enzymology , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Phospholipases A2 , Structure-Activity Relationship
2.
J Med Chem ; 39(26): 5137-58, 1996 Dec 20.
Article in English | MEDLINE | ID: mdl-8978843

ABSTRACT

As reported in our previous paper, a series of indole-3-acetamides which possessed potency and selectivity as inhibitors of human nonpancreatic secretory phospholipase A2(hnps-PLA2) was developed. The design of these compounds was based on information derived from x-ray crystal structures determined for complexes between the enzyme and its inhibitors. We describe here the further implementation of this structure-based design strategy and continued SAR development to produce indole-3-acetamides with additional functionalities which provide increased interaction with important residues within the enzyme active site. These efforts led to inhibitors with substantially enhanced potency and selectivity.


Subject(s)
Indoleacetic Acids/chemistry , Indoleacetic Acids/pharmacology , Phospholipases A/antagonists & inhibitors , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Phospholipases A2 , Structure-Activity Relationship
3.
J Med Chem ; 39(26): 5159-75, 1996 Dec 20.
Article in English | MEDLINE | ID: mdl-8978844

ABSTRACT

The preceding papers of this series detail the development of functionalized indole-3-acetamides as inhibitors of hnps-PLA2. We describe here the extension of the structure-activity relationship to include a series of indole-3-glyoxamide derivatives. Functionalized indole-3-glyoxamides with an acidic substituent appended to the 4- or 5-position of the indole ring were prepared and tested as inhibitors of hnps-PLA2. It was found that the indole-3-glyoxamides with a 4-oxyacetic acid substituent had optimal inhibitory activity. These inhibitors exhibited an improvement in potency over the best of the indole-3-acetamides, and LY315920 (6m) was selected for evaluation clinically as an hnps-PLA2 inhibitor.


Subject(s)
Phospholipases A/antagonists & inhibitors , Sulfonylurea Compounds/chemistry , Sulfonylurea Compounds/pharmacology , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Phospholipases A2 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL