Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Med Res Rev ; 44(5): 2078-2111, 2024 09.
Article in English | MEDLINE | ID: mdl-38530106

ABSTRACT

As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.


Subject(s)
Alzheimer Disease , Antineoplastic Agents , Dementia , Drug Repositioning , Humans , Alzheimer Disease/drug therapy , Animals , Dementia/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Observational Studies as Topic , Drug Evaluation, Preclinical
2.
BMC Bioinformatics ; 24(1): 313, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592230

ABSTRACT

BACKGROUND: Antibiotic resistance is a major public health concern around the globe. As a result, researchers always look for new compounds to develop new antibiotic drugs for combating antibiotic-resistant bacteria. Bacteriocin becomes a promising antimicrobial agent to fight against antibiotic resistance, due to cases of both broad and narrow killing spectra. Sequence matching methods are widely used to identify bacteriocins by comparing them with the known bacteriocin sequences; however, these methods often fail to detect new bacteriocin sequences due to their high diversity. The ability to use a machine learning approach can help find new highly dissimilar bacteriocins for developing highly effective antibiotic drugs. The aim of this work is to develop a machine learning-based software tool called BaPreS (Bacteriocin Prediction Software) using an optimal set of features for detecting bacteriocin protein sequences with high accuracy. We extracted potential features from known bacteriocin and non-bacteriocin sequences by considering the physicochemical and structural properties of the protein sequences. Then we reduced the feature set using statistical justifications and recursive feature elimination technique. Finally, we built support vector machine (SVM) and random forest (RF) models using the selected features and utilized the best machine learning model to implement the software tool. RESULTS: We applied BaPreS to an established dataset and evaluated its prediction performance. Acquired results show that the software tool can achieve a prediction accuracy of 95.54% for testing protein sequences. This tool allows users to add new bacteriocin or non-bacteriocin sequences in the training dataset to further enhance the predictive power of the tool. We compared the prediction performance of the BaPreS with a popular sequence matching-based tool and a deep learning-based method, and our software tool outperformed both. CONCLUSIONS: BaPreS is a bacteriocin prediction tool that can be used to discover new highly dissimilar bacteriocins for developing highly effective antibiotic drugs. This software tool can be used with Windows, Linux and macOS operating systems. The open-source software package and its user manual are available at https://github.com/suraiya14/BaPreS .


Subject(s)
Bacteriocins , Anti-Bacterial Agents/pharmacology , Amino Acid Sequence , Machine Learning , Software
3.
Chemistry ; 29(36): e202300703, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37057902

ABSTRACT

We describe the synthesis and biochemical and cellular profiling of five partially reduced or demethylated analogs of the marine macrolide (-)-zampanolide (ZMP). These analogs were derived from 13-desmethylene-(-)-zampanolide (DM-ZMP), which is an equally potent cancer cell growth inhibitor as ZMP. Key steps in the synthesis of all compounds were the formation of the dioxabicyclo[15.3.1]heneicosane core by an intramolecular HWE reaction (67-95 % yield) and a stereoselective aza-aldol reaction with an (S)-BINOL-derived sorbamide transfer complex, to establish the C(20) stereocenter (24-71 % yield). As the sole exception, for the 5-desmethyl macrocycle, ring-closure relied on macrolactonization; however, elaboration of the macrocyclization product into the corresponding zampanolide analog was unsuccessful. All modifications led to reduced cellular activity and lowered microtubule-binding affinity compared to DM-ZMP, albeit to a different extent. For compounds incorporating the reactive enone moiety of ZMP, IC50 values for cancer cell growth inhibition varied between 5 and 133 nM, compared to 1-12 nM for DM-ZMP. Reduction of the enone double bond led to a several hundred-fold loss in growth inhibition. The cellular potency of 2,3-dihydro-13-desmethylene zampanolide, as the most potent analog identified, remained within a ninefold range of that of DM-ZMP.


Subject(s)
Macrolides , Microtubules , Macrolides/chemistry , Structure-Activity Relationship , Protein Binding
4.
Anal Bioanal Chem ; 414(27): 7865-7875, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36163593

ABSTRACT

A new method was developed and validated for the simultaneous determination of nicotine and tobacco-specific nitrosamines (TSNAs) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN) in two different tests matrices: porcine buccal epithelium tissue and phosphate buffered saline (PBS) extracts of smokeless tobacco products. The novelty of this work is in the development of a liquid chromatography tandem mass spectrometry method that can provide simultaneous quantification of trace levels of TSNAs and high concentrations of nicotine in biological media. Precision, accuracy, and stability were evaluated during method validation to ensure the method was fit for purpose. Several sample preparation and extraction methods were evaluated to minimize matrix effects and maximize analyte recoveries. The method was accurate in the range of 81.1% - 117%; repeatability was estimated in the range of 1.5% - 13.6% across multiple concentrations. The linear regression correlation coefficient (R2) was greater than 0.9959 for all analytes, and the limit of detection (LOD) was determined for nicotine, NNK, and NNN at 1 ng/mL 0.005 ng/mL, and 0.006 ng/ mL, respectively. Our method was found to be appropriate for the analysis of nicotine, NNN, and NNK in the porcine buccal epithelium and PBS extracts of smokeless tobacco products.


Subject(s)
Nitrosamines , Tandem Mass Spectrometry , Carcinogens/analysis , Chromatography, High Pressure Liquid , Nicotine , Nitrosamines/analysis , Phosphates , Plant Extracts , Nicotiana/chemistry
5.
Arch Toxicol ; 95(5): 1805-1829, 2021 05.
Article in English | MEDLINE | ID: mdl-33963423

ABSTRACT

Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotiana/toxicity , Smoke , Aerosols , Animals , Apolipoproteins E/metabolism , Female , Inhalation Exposure , Lung , Mice , Nicotine , Respiratory Function Tests , Smoking , Tobacco Products , Transcriptome
6.
Arch Biochem Biophys ; 655: 1-11, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30077544

ABSTRACT

The esterification of a fatty acyl moiety to diacylglycerol to form triacylglycerol (TAG) is catalysed by two diacylglycerol O-acyltransferases (DGATs) encoded by genes belonging to two distinct gene families. The enzymes are referred to as DGAT1 and DGAT2 in order of their identification. Both proteins are transmembrane proteins localized in the endoplasmic reticulum. Their membrane topologies are however significantly different. This difference is hypothesized to give the two isozymes different abilities to interact with other proteins and organelles and access to different pools of fatty acids, thereby creating a distinction between the enzymes in terms of their role and contribution to lipid metabolism. DGAT1 is proposed to have dual topology contributing to TAG synthesis on both sides of the ER membrane and esterifying only the pre-formed fatty acids. There is evidence to suggest that DGAT2 translocates to the lipid droplet (LD), associates with other proteins, and synthesizes cytosolic and luminal apolipoprotein B associated LD-TAG from both endogenous and exogenous fatty acids. The aim of this review is to differentiate between the two DGAT enzymes by comparing the genes that encode them, their proposed topologies, the proteins they interact with, and their roles in lipid metabolism.


Subject(s)
Diacylglycerol O-Acyltransferase/chemistry , Diacylglycerol O-Acyltransferase/metabolism , Triglycerides/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Cell Membrane/chemistry , Diacylglycerol O-Acyltransferase/genetics , Endoplasmic Reticulum/metabolism , Humans , Lipid Droplets/metabolism , Liver/metabolism , Protein Domains
7.
J Nat Prod ; 81(11): 2446-2454, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30407005

ABSTRACT

A detailed examination of the red alga Callophycus serratus collected in Tonga led to the isolation of six new halogenated meroditerpenoids: callophycol C (1), callophycoic acid I (2), iodocallophycols E (3) and F (4), iodocallophycoic acid B (5), and callophycoic acid J (6). Of these, compounds 3-5 are new iodinated additions to the growing family of Callophycus meroditerpenoids. The relative configurations of compounds 1-6 were deduced by analyses of 1D NOE data and 1H-1H scalar coupling constants, and 3-6 are proposed to differ from the closely related compounds reported in the literature, iodocallophycoic acid A and iodocallophycols A-D. Iodocallophycol E (3) exhibited moderate cytotoxicity against the promyelocytic leukemia cell line HL-60 with an IC50 value of 6.0 µM.


Subject(s)
Diterpenes/isolation & purification , Rhodophyta/chemistry , Diterpenes/chemistry , HL-60 Cells , Halogenation , Humans , Pacific Ocean
8.
J Nat Prod ; 81(9): 2125-2128, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30188708

ABSTRACT

A new peloruside congener, peloruside E (5), has been isolated in sub-milligram quantities from a specimen of the New Zealand marine sponge Mycale hentscheli. The structure of 5 differs from the parent compound peloruside A (1) by replacement of the C-10 gem-dimethyl moiety with a monomethyl substituent and represents the first structural deviation in the pelorusane scaffold. Peloruside E (5) is potently antiproliferative (HL-60, IC50 90 nM, cf. 1, 19 nM) and polymerizes purified tubulin, albeit at a rate lower than that of 1.


Subject(s)
Macrolides/isolation & purification , Microtubules/drug effects , Porifera/chemistry , Tubulin Modulators/pharmacology , Animals , HL-60 Cells , Humans , Macrolides/chemistry , Macrolides/pharmacology , Magnetic Resonance Spectroscopy
9.
J Nat Prod ; 81(2): 387-393, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29373034

ABSTRACT

Seven new members of the hamigeran family of diterpenoids have been isolated from the New Zealand marine sponge Hamigera tarangaensis. Among the new additions are hamigeran R (1), considered to be the first benzonitrile-based marine natural product, and hamigeran S (2), the first dimeric structure in the series. The formation of 1 and 2 is thought to occur via the reaction of hamigeran G with a nitrogen source, where the nitrile carbon of 1 is derived from the terpenoid skeleton.


Subject(s)
Diterpenes/chemistry , Naphthoquinones/chemistry , Nitrogen/chemistry , Porifera/chemistry , Animals , Biological Products/chemistry , Carbon/chemistry , New Zealand , Terpenes/chemistry
10.
J Nat Prod ; 81(3): 691-702, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29431439

ABSTRACT

Marine natural products as secondary metabolites are a potential major source of new drugs for treating disease. In some cases, cytotoxic marine metabolites target the microtubules of the eukaryote cytoskeleton for reasons that will be discussed. This review covers the microtubule-targeting agents reported from sponges, corals, tunicates, and molluscs and the evidence that many of these secondary metabolites are produced by bacterial symbionts. The review finishes by discussing the directions for future development and production of clinically relevant amounts of these natural products and their analogues through aquaculture, chemical synthesis, and biosynthesis by bacterial symbionts.


Subject(s)
Aquatic Organisms/chemistry , Biological Products/chemistry , Invertebrates/chemistry , Microtubules/metabolism , Animals , Bacteria/drug effects , Humans , Symbiosis/drug effects
11.
J Nat Prod ; 81(3): 634-640, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29400463

ABSTRACT

HCT116 colorectal cancer cell sensitivity to peloruside A (PLA) in normoxia is not altered by hypoxia preconditioning of the cells. We examined whether the PLA effects were altered in hypoxia and whether the activity was dependent on p53. The cytotoxicity of PLA in wild-type HCT116 cells was largely unaffected by hypoxia; however, cells in which p53 was knocked out showed resistance. Knockout of the p21 gene had little effect on the activity of PLA in hypoxia. It was concluded that the response of cells to the microtubule-stabilizing agent PLA under hypoxic conditions is a p53-dependent process.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Death/drug effects , Colorectal Neoplasms/drug therapy , Hypoxia/drug therapy , Lactones/pharmacology , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HCT116 Cells , Humans , Hypoxia/metabolism , Microtubules/drug effects , Microtubules/metabolism
12.
J Nat Prod ; 81(11): 2539-2544, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30371079

ABSTRACT

Four new compounds (2-5) structurally related to the microtubule-stabilizing agent (-)-zampanolide (1) have been isolated from the Tongan marine sponge Cacospongia mycofijiensis. Three of these new structures, zampanolides B-D (2-4), exhibit nanomolar cytotoxicity toward the HL-60 cell line, are antimitotic, and induce in vitro tubulin polymerization at levels comparable to 1. Zampanolide E (5), saturated at C-8/C-9, was significantly less potent and does not stabilize purified tubulin, even at 10-fold higher concentrations. The structural differences across these compounds reveal a plasticity of the zampanolide pharmacophore. While unsaturation is required at Δ8, the configuration of this alkene and those of Δ4 and Δ4' have little effect on tubulin polymerization. The first natural co-occurrence of 1 and (-)-dactylolide (6) from the same sponge extract is also noted.


Subject(s)
Antineoplastic Agents/isolation & purification , Macrolides/chemistry , Macrolides/isolation & purification , Microtubules/drug effects , Porifera/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Macrolides/pharmacology , Marine Biology , Molecular Structure
13.
J Nat Prod ; 81(3): 494-505, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29023132

ABSTRACT

The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to ß-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 105 M-1 in the case of unmodified tubulin to 1.4 ± 0.3 × 105 M-1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of ß-tubulin.


Subject(s)
Binding Sites/physiology , Bridged-Ring Compounds/metabolism , Colchicine/metabolism , Macrolides/metabolism , Nucleotides/metabolism , Taxoids/metabolism , Tubulin/metabolism , Animals , Biological Products/metabolism , Cattle , Humans , Ligands , Microtubules/metabolism
14.
Invest New Drugs ; 35(6): 706-717, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28733703

ABSTRACT

Chemotherapeutic agents can induce accelerated senescence in tumor cells, an irreversible state of cell cycle arrest. Paclitaxel, a microtubule-stabilizing agent used to treat solid tumors of the breast, ovary, and lung and discodermolide, another stabilizing agent from a marine sponge, induce senescence in cultured cancer cells. The aim of this study was to determine if the microtubule-stabilizing agent peloruside A, a polyketide natural product from a marine sponge, can induce accelerated senescence in a breast cancer cell line MCF7. Doxorubicin, a DNA-damaging agent, paclitaxel, and discodermolide were used as positive controls. Senescence-associated-ß-galactosidase activity was increased by peloruside A, similar to paclitaxel, discodermolde, and doxorubicin, with a potency heirarchy of doxorubicin > paclitaxel > discodermolide > peloruside, based on IC25 concentrations that inhibit proliferation. Clonogenic survival was significantly decreased by peloruside A, similar to doxorubicin and the two other microtubule-stabilizing agents. The tumor suppressor protein p53 increased after treatment, whereas pRb decreased in response to all four compounds. It was concluded that in addition to apoptosis, peloruside A causes accelerated senescence in a subpopulation of MCF7 cells that contributes to its potential anticancer activity in a breast cancer cell line.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Lactones/pharmacology , Microtubules/chemistry , Humans , MCF-7 Cells , Microtubules/drug effects
15.
FEMS Yeast Res ; 17(3)2017 05 01.
Article in English | MEDLINE | ID: mdl-28472279

ABSTRACT

The genetic basis of variation in drug response was investigated in individual Saccharomyces cerevisiae strains that exhibited different susceptibility to two antifungal agents: benomyl and ketoconazole. Following dose-response screening of 25 strains, 4 were selected on the basis of resistance or sensitivity relative to the standard laboratory strain BY. UWOPS87-2421 and L-1374 were respectively resistant and sensitive to benomyl; DBVPG6044 and Y12 were respectively resistant and sensitive to ketoconazole. We used advanced intercross lines and next generation sequencing-bulk segregant analysis to characterise the quantitative trait loci (QTL) underpinning drug responses after drug selection. Drug response was controlled by multiple QTL, ranging from a minimum of 5 to a maximum of 60 loci, almost all of which were not the primary drug target. For each drug, the resistant and the sensitive strain exhibited a number of shared loci, but also had strain-specific QTL. In our analysis, it was possible to estimate genetic effect of QTL, and a number of those shared between resistant and sensitive strains exhibited variable effect on the response phenotype. Thus, drug responses arise as a result of different genetic architectures, depending on the genetic background of the individual strain in question.


Subject(s)
Antifungal Agents/pharmacology , Benomyl/pharmacology , Drug Resistance, Fungal/genetics , Ketoconazole/pharmacology , Quantitative Trait Loci , Saccharomyces cerevisiae/drug effects , Crosses, Genetic , Culture Media/chemistry , Genotype , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Species Specificity
16.
Biochim Biophys Acta Gen Subj ; 1861(7): 1833-1843, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28366502

ABSTRACT

BACKGROUND: Hypoxia is a prominent feature of solid tumors, dramatically remodeling microtubule structures and cellular pathways and contributing to paclitaxel resistance. Peloruside A (PLA), a microtubule-targeting agent, has shown promising anti-tumor effects in preclinical studies. Although it has a similar mode of action to paclitaxel, it binds to a distinct site on ß-tubulin that differs from the classical taxane site. In this study, we examined the unexplored effects of PLA in hypoxia-conditioned colorectal HCT116 cancer cells. METHODS: Cytotoxicity of PLA was determined by cell proliferation assay. The effects of a pre-exposure to hypoxia on PLA-induced cell cycle alterations and apoptosis were examined by flow cytometry, time-lapse imaging, and western blot analysis of selected markers. The hypoxia effect on stabilization of microtubules by PLA was monitored by an intracellular tubulin polymerization assay. RESULTS: Our findings show that the cytotoxicity of PLA is not altered in hypoxia-conditioned cells compared to paclitaxel and vincristine. Furthermore, hypoxia does not alter PLA-induced microtubule stabilization nor the multinucleation of cells. PLA causes cyclin B1 and G2/M accumulation followed by apoptosis. CONCLUSIONS: The cellular and molecular effects of PLA have been determined in normoxic conditions, but there are no reports of PLA effects in hypoxic cells. Our findings reveal that hypoxia preconditioning does not alter the sensitivity of HCT116 to PLA. GENERAL SIGNIFICANCE: These data report on the cellular and molecular effects of PLA in hypoxia-conditioned cells for the first time, and will encourage further exploration of PLA as a promising anti-tumor agent.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Hypoxia , Lactones/pharmacology , Microtubules/drug effects , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cyclin B1/metabolism , HCT116 Cells , HT29 Cells , Humans , Paclitaxel/pharmacology , Vincristine/pharmacology
17.
Int J Mol Sci ; 18(5)2017 May 03.
Article in English | MEDLINE | ID: mdl-28467385

ABSTRACT

Zampanolide, first discovered in a sponge extract in 1996 and later identified as a microtubule-stabilizing agent in 2009, is a covalent binding secondary metabolite with potent, low nanomolar activity in mammalian cells. Zampanolide was not susceptible to single amino acid mutations at the taxoid site of ß-tubulin in human ovarian cancer 1A9 cells, despite evidence that it selectively binds to the taxoid site. As expected, it did not synergize with other taxoid site microtubule-stabilizing agents (paclitaxel, ixabepilone, discodermolide), but surprisingly also did not synergize in 1A9 cells with laulimalide/peloruside binding site agents either. Efforts to generate a zampanolide-resistant cell line were unsuccessful. Using a standard wound scratch assay in cell culture, it was an effective inhibitor of migration of human umbilical vein endothelial cells (HUVEC) and fibroblast cells (D551). These properties of covalent binding, the ability to inhibit cell growth in paclitaxel and epothilone resistant cells, and the ability to inhibit cell migration suggest that it would be of interest to investigate zampanolide in preclinical animal models to determine if it is effective in vivo at preventing tumor growth and metastasis.


Subject(s)
Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Macrolides/pharmacology , Tubulin Modulators/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Female , Fibroblasts/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Lactones/pharmacology , Microtubules/metabolism , Taxoids/metabolism , Tubulin/metabolism
18.
Biochim Biophys Acta ; 1855(2): 172-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25662312

ABSTRACT

Microtubules, an important cytoskeletal protein involved in mitotic and non-mitotic functions of cells, are important targets in cancer therapy. Microtubule-stabilizing drugs like the taxanes are critical adjuvant and palliative first-line therapies for the treatment of early, advanced and metastatic solid tumors of different lineages. Their adverse on- and off-target effects and high susceptibility to multidrug resistance, however, are major challenges encountered in the clinic in the treatment of solid cancers. Although biochemical resistance to microtubule-stabilizing drugs has been well characterized, molecular mechanisms that contribute to clinical resistance to taxanes in solid tumors still remain poorly understood and uncontrolled. The heterogeneous tumor microenvironment leads to greater diversity of resistance mechanisms to taxanes. Tumor hypoxia, a prominent feature of solid tumors, results in a broad range of effects on a number of cellular pathways and is one of the major contributors to the development of resistance to not only microtubule-stabilizing drugs but also other anticancer drugs. In this review, we highlight the potential role of hypoxia in the development of resistance to taxanes through mechanisms that involve altering the cell cycle, changing the properties of microtubules, and inducing the overexpression of gene products that contribute to drug resistance. Hypoxia-induced challenges described in this review are not limited to microtubule-stabilizing drugs alone, but in many cases also impact on treatment with non-microtubule-targeting anticancer drugs.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Microtubules/drug effects , Neoplasms/drug therapy , Taxoids/therapeutic use , Cell Cycle/drug effects , Cell Hypoxia/drug effects , Drug-Related Side Effects and Adverse Reactions , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Microtubules/genetics , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment
19.
Nat Prod Rep ; 33(4): 549-61, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26867978

ABSTRACT

Covering: 2000 up to 2016Peloruside A, a macrocyclic secondary metabolite from a New Zealand marine sponge, Mycale hentscheli, has shown potent antiproliferative activity in cultured cancer cells as well as inhibitory effects on tumor growth in mouse models. The compound also has promising effects against cell models of neurodegenerative and autoimmune diseases. In mechanistic studies, peloruside A shares with paclitaxel (Taxol®) the ability to stabilize microtubules by binding to ß-tubulin. Peloruside A, however, occupies a unique external site on ß-tubulin that does not overlap the classical taxoid site that is located on the inside of the microtubule. As such, peloruside A has been of central importance in defining a new microtubule-stabilizer binding site localized on the exterior surface of the microtubule that has led to increased interest in the design of an upscaled total synthesis of the natural product and its analogues. Here, we review advances in the biochemical and biological validation of peloruside A as an attractive therapeutic candidate for the treatment of cancer, neurodegeneration, and autoimmune disease.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Lactones/pharmacology , Microtubules/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/isolation & purification , Humans , Lactones/chemistry , Lactones/isolation & purification , Mice , Molecular Structure , Porifera/chemistry , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
20.
Invest New Drugs ; 34(4): 424-38, 2016 08.
Article in English | MEDLINE | ID: mdl-27155614

ABSTRACT

To ensure proper chromosome segregation, mitosis is tightly regulated by the spindle assembly checkpoint (SAC). Low concentrations of microtubule-stabilizing agents can induce aneuploid populations of cells in the absence of G2/M block, suggesting pertubation of the spindle checkpoint. We investigated the effects of peloruside A, a microtubule-stabilizing agent, on expression levels of several key cell cycle proteins, MAD2, BUBR1, p55CDC and cyclin B1. Synchronized 1A9 ovarian carcinoma cells were allowed to progress through the cell cycle in the presence or absence of peloruside A. Co-immunoprecipitation and Western blotting were used to probe the cell cycle kinetics of MAD2 and BUBR1 dissociation from p55CDC. Using confocal microscopy, we investigated whether premature dissociation of MAD2 and BUBR1 at low (40 nM) but not high (100 nM) concentrations of peloruside A was caused by defects in the attachment of chromosomes to the mitotic spindle. An increased frequency of polar chromosomes was observed at low concentrations of peloruside A, suggesting that an increased frequency of pseudo-metaphase cells, which are not detected by the spindle assembly checkpoint, may be underlying the induction of aneuploidy.


Subject(s)
Aneuploidy , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Lactones/pharmacology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Humans , Microtubules , Mitosis/drug effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL