Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Parasitol Res ; 118(1): 317-324, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30397777

ABSTRACT

A skin test is a widely used tool in diagnostic evaluations to investigate cutaneous leishmaniases (CL). The actual antigen (Montenegro skin test [MST] antigen) presents some difficulties that pertain to its manufacturing and validation. To contribute to overcoming this problem, we propose the application of new-generation molecules that are based on skin antigen tests. These antigens were obtained through biotechnology pathways by manufacturing synthetic mimetic peptides. Three peptides, which were selected by phage display, were tested as skin test antigens in an animal model (Cavia porcellus) that was immunized with Leishmania amazonensis or Leishmania braziliensis. The peptide antigens, individually (PA1, PA2, PA3) or in a mix (PAMix), promoted induration reactions at 48 and 72 h after the test was performed. The indurations varied from 0.5 to 0.7 cm. In the animals immunized with L. amazonensis, the PA3 antigen showed better results than the standard MST antigen. In animals immunized with L. braziliensis, two peptide antigens (PA2 and PAMix) promoted induration reactions for a longer period of time than the standard MST antigen. These results validate our hypothesis that peptides could be used as antigens in skin tests and may replace the current antigen for CL diagnosis.


Subject(s)
Antigens, Protozoan/immunology , Leishmania braziliensis/immunology , Leishmaniasis, Cutaneous/diagnosis , Peptides/immunology , Skin Tests/methods , Animals , Disease Models, Animal , Guinea Pigs , Humans , Leishmania/immunology , Leishmania braziliensis/genetics , Leishmania braziliensis/isolation & purification , Leishmania mexicana/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology
2.
Theor Appl Genet ; 129(7): 1317-1331, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27008477

ABSTRACT

KEY MESSAGE: TaALMT1 and TaMATE1B promoter alleles are highly correlated with wheat growth in acidic soil with a high concentration of toxic aluminium. The aluminium (Al(3+)) resistance of 338 wheat genotypes with different geographic origins was correlated with morphological traits and TaALMT1 and TaMATE1B alleles. Both of these genes encode malate and citrate transporters associated with Al(3+) resistance mechanisms in wheat. Based on comparisons with the sensitive and resistant controls, the relative root growth was evaluated in hydroponic experiments and the plant performance was visually accessed in the field. The correlation between Al(3+) tolerance in the hydroponic and field tests was moderate (r = 0.56, P < 0.001). Higher selection pressure was observed in the field because a smaller number of genotypes was classified as resistant. The combination between the six TaALMT1 alleles and the two TaMATE1B promoters allowed the identification of 11 haplotypes that showed a high (r = 0.71, P < 0.001) correlation with Al(3+) resistance in the field, with the TaALMT1 alleles accounting for most of the correlation. The Brazilian wheat genotypes presented the best performance in soil, including eight cultivars with promoters usually associated with Al(3+) resistance and another six genotypes classified as moderately resistant but containing alleles usually associated with Al(3+) sensitivity. Although an increase in favourable alleles was observed over the past few decades, the average Al(3+) resistance in the field was not significantly different from that of older cultivars. The ease identification of the TaALMT1 and TaMATE1B alleles and their higher association with Al(3+) resistance along with the best genotypes identified here may be used for wheat-breeding programmes interested in increasing wheat Al(3+) resistance.


Subject(s)
Aluminum/toxicity , Organic Anion Transporters/genetics , Plant Proteins/genetics , Soil/chemistry , Triticum/genetics , Acids/chemistry , Alleles , Carrier Proteins/genetics , DNA, Plant/genetics , Genotype , Haplotypes , Hydroponics , Promoter Regions, Genetic , Soil Pollutants/toxicity
3.
Int J Biol Macromol ; 280(Pt 4): 136108, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343256

ABSTRACT

Spiders of Loxosceles genus, or Brown spiders produce a potent venom with minimal volume and protein content. Among its toxins, phospholipases D (PLDs) are notable for causing primary local and systemic manifestations observed following envenomation. They degrade cellular phospholipids, mainly sphingomyelin and lysophosphatidylcholine. We present a robust and detailed analysis of PLD transcripts from venom glands of three major clinically relevant South American species-L. intermedia, L. laeta, and L. gaucho-using next-generation sequencing. Results confirmed that PLDs are the most highly expressed toxins, accounting for 65.4 % of expression in L. intermedia, 71.8 % in L. gaucho, and 50.4 % in L. laeta. These findings further support the idea that these enzymes form a protein family both within and across species. Eighteen contigs for PLDs were found for L. gaucho, 24 for L. intermedia, and 21 for L. laeta. A detailed analysis revealed that, although all contigs display conserved amino acid residues directly involved in catalysis, magnesium coordination, and substrate affinity, they also possess distinct primary sequences with important substitutions. Such data reinforces the hypothesis that these toxins may act synergistically. Furthermore, new PLD sequences were identified within the contigs. For L. intermedia, 14 potential new isoforms were identified; 16 for L gaucho; and 16 novel sequences for L. laeta. This indicates that there is still a wealth of undisclosed information about these toxins. These data will help identify structural and functional differences among these proteins, support future functional studies, and to the comprehensive understanding of the mechanism of action of PLDs.

4.
Acta Trop ; 258: 107354, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106916

ABSTRACT

Loxoscelism is the pathological condition triggered by a brown spider bite. The venom of these spiders is rich in phospholipases D (PLDs), which can induce virtually all local and systemic manifestations. Recombinant mutated PLDs from clinically relevant Loxosceles species in South America have been investigated as potential antigens to develop novel therapeutic strategies for loxoscelism. However, certain gaps need to be addressed before a clinical approach can be implemented. In this study, we examined the potential of these recombinant mutated PLDs as antigens by testing some variations in the immunization scheme. Furthermore, we evaluated the efficacy of the produced antibodies in neutralizing the nephrotoxicity and sphingomyelinase activity of brown spider venoms. Our findings indicate that the number of immunizations has a greater impact on the effectiveness of neutralization compared to the amount of antigen. Specifically, two or three doses were equally effective in reducing dermonecrosis and edema. Additionally, three immunizations proved to be more effective in neutralizing mice lethality than one or two. Moreover, immunizations mitigated the signs of kidney injury, a crucial aspect given that acute renal failure is a serious systemic complication. In vitro inhibition of the sphingomyelinase activity of Loxosceles venoms, a key factor in vivo toxicity, was nearly complete after incubation with antibodies raised against these antigens. These findings underscore the importance of implementing an effective immunization scheme with multiple immunizations, without the need for high antigen doses, and enhances the spectrum of neutralization exhibited by antibodies generated with these antigens. In summary, these results highlight the strong potential of these antigens for the development of new therapeutic strategies against cutaneous and systemic manifestations of loxoscelism.


Subject(s)
Phospholipase D , Recombinant Proteins , Spider Venoms , Animals , Phospholipase D/immunology , Phospholipase D/genetics , Spider Venoms/immunology , Mice , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Spider Bites/immunology , Brown Recluse Spider/immunology , Female , Antigens/immunology , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/immunology , Antibodies, Neutralizing , Antivenins/immunology , Antivenins/administration & dosage , Disease Models, Animal , Immunization , Phosphoric Diester Hydrolases
5.
BMC Infect Dis ; 13: 42, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23351151

ABSTRACT

BACKGROUND: An early diagnostic test for detecting infection in leprosy is fundamental for reducing patients' sequelae. The currently used lepromin is not adequate for disease diagnosis and, so far, no antigen to be used in intradermoreaction has proved to be sensitive and specific for that purpose. Aiming at identifying new reagents to be used in skin tests, candidate antigens were investigated. METHODS: Random peptide phage display libraries were screened by using antibodies from leprosy patients in order to identify peptides as diagnostic reagents. RESULTS: Seven different phage clones were identified using purified antibodies pooled from sera of leprosy patients. When the clones were tested with serum samples by ELISA, three of them, 5A, 6A and 1B, allowed detecting a larger number of leprosy patients when compared to controls. The corresponding peptides expressed by selected phage clones were chemically synthesized. A pilot study was undertaken to assess the use of peptides in skin tests. The intradermal challenge with peptides in animals previously sensitized with Mycobacterium leprae induced a delayed-type hypersensitivity with peptide 5A (2/5) and peptide 1B (1/5). In positive controls, there was a 3/5 reactivity for lepromin and a 4/5 reactivity of the sensitized animals with soluble extract of M. leprae. CONCLUSIONS: The preliminary data suggest that may be possible to develop reagents with diagnostic potential based on peptide mimotopes selected by phage display using polyclonal human antibodies.


Subject(s)
Antigens, Bacterial/immunology , Leprosy/diagnosis , Mycobacterium leprae/immunology , Animals , Cell Surface Display Techniques , Epitopes/immunology , Female , Guinea Pigs , Humans , Hypersensitivity, Delayed/immunology , Lepromin/immunology , Peptide Library , Peptides/immunology
6.
Appl Microbiol Biotechnol ; 97(3): 1031-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22911095

ABSTRACT

The development of new value-added applications for glycerol is of worldwide interest because of the environmental and economic problems that may be caused by an excess of glycerol generated from biodiesel production. A novel use of glycerol as a major substrate for production of a low-cost sterilization biological indicator system (BIS; spores on a carrier plus a recovery medium) was investigated. A sequential experimental design strategy was applied for product development and optimization. The proposed recovery medium enables germination and outgrowth of heat-damaged spores, promoting a D (160 °C) value of 6.6 ± 0.1 min. Bacillus atrophaeus spores production by solid-state fermentation reached a 2.3 ± 1.2 × 10(8) CFU/g dry matter. Sporulation kinetics results allowed this process to be restricted in 48 h. Germination kinetics demonstrated the visual identification of nonsterile BIS within 24 h. Performance evaluation of the proposed BIS against dry-heat and ethylene oxide sterilization showed compliance with the regulatory requirements. Cost breakdowns were from 41.8 (quality control) up to 72.8 % (feedstock). This is the first report on sterilization BIS production that uses glycerol as a sole carbon source, with significant cost reduction and the profitable use of a biodiesel byproduct.


Subject(s)
Bacillus/drug effects , Bacillus/radiation effects , Biological Assay/methods , Glycerol/metabolism , Spores, Bacterial/drug effects , Spores, Bacterial/radiation effects , Sterilization/methods , Bacillus/growth & development , Bacillus/metabolism , Biological Assay/economics , Costs and Cost Analysis , Culture Media/chemistry , Quality Control , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Sterilization/standards , Time Factors
7.
Toxins (Basel) ; 15(10)2023 09 26.
Article in English | MEDLINE | ID: mdl-37888620

ABSTRACT

Antivenom production against Loxosceles venom relies on horses being immunized and bled for plasma harvest. One horse can partake in several cycles of antivenom production, which will require years of constant venom and adjuvant inoculation and bleeding. The actual impact on the health of horses that participate in several antivenom-producing cycles is unknown. Therefore, this study aimed to evaluate the general health status of horses that underwent at least six cycles of loxoscelic antivenom production. Seven crossbred horses that had partaken in six to eight complete antivenom-producing cycles were used and established as the immunized group (IG). Under the same handling and general management, eleven horses were established as the control group (CG). The horses were evaluated regarding their general clinical status and had their blood sampled, and an ECG recorded. The IG presented lower RBC and PCV, despite keeping values within inferior limits for the species. Renal function was not impaired, and liver-related enzymes were higher than those in the CG, probably due to liver exertion from immunoglobulin synthesis. ECG showed some abnormalities in the IG, such as atrioventricular block and a wandering atrial pacemaker, corroborated by an increase in CK-MB. The cardiovascular abnormalities were mainly found in the horses that participated in several antivenom-producing cycles. The overall results indicate that these horses had some impairment of their general health status. Once available, some alternative, less toxic antigens should replace the venom for immunization of horses used for antivenom production.


Subject(s)
Antivenins , Immunization , Horses , Animals , Adjuvants, Immunologic , Antigens , Health Status
8.
Arch Microbiol ; 194(10): 815-25, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22526268

ABSTRACT

Bacillus spp. spores are usually obtained from strains cultivated in artificial media. However, in natural habitats, spores are predominantly formed from bacteria present in highly surface-associated communities of cells. Solid-state fermentation (SSF) is the culture method that best mimetizes the natural environment of many microorganisms that grow attached to the surface of solid particles. This study aims to confirm that sporulation through SSF of Bacillus atrophaeus occurs by biofilm formation and that this model of fermentation promotes important phenotypic changes in the spores. Sporulation on standard agar and by SSF with sand and sugarcane bagasse as support was followed by a comparative study of the formed spores. Growth characteristics, metabolic and enzymatic profiles confirmed that sporulation through SSF occurs by biofilm formation promoting important phenotypic changes. It was possible to demonstrate that spores coat had different structure and the presence of ridges only on SSF spores' surface. The sporulation conditions did not affect the dry-heat spore resistance. The type of support evaluated also influenced in the phenotypic alterations; however, the used substrates did not cause interference. This work provides novel information about B. atrophaeus response when submitted to different sporulation conditions and proposes a new concept about bacterial biofilm formation by SSF.


Subject(s)
Bacillus/physiology , Biofilms , Fermentation , Bacillus/enzymology , Bacillus/growth & development , Microscopy, Electron, Scanning , Spores, Bacterial/physiology
9.
Appl Microbiol Biotechnol ; 93(1): 151-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21785930

ABSTRACT

The production of biological indicators involving bacterial sporulation and multi-step downstream processes has been described. The goal of the present work was to use fermented material as the final product in a biological indicator, thereby reducing processing steps and costs. The performance of three different inexpensive supports (vermiculite, sand, and sugarcane bagasse) was assessed by determining Bacillus atrophaeus sporulation during solid-state fermentation and by assessing the direct use of the fermentation products in the subsequent steps of the process. All three supports allowed spore production of between 10(7) and 10(9) CFU g(-1). Sand proved to be the best inert support enabling the direct use of the fermented product due to its easy homogenization, filling properties, and compatibility with recovery medium. Bacterial adhesion to the sand surface was supported by biofilm formation. The resistance to sterilization of the dried fermentation product was evaluated. For dry-heat resistance (160°C), the D value was 6.6 min, and for ethylene oxide resistance (650 mg/L), the D value was 6.5 min. The cost reduction of this process was at least 48%. No previous studies have been published on the application of sand as a support in solid-state fermentation for the production of biological indicators.


Subject(s)
Bacillus/growth & development , Indicators and Reagents/economics , Sterilization/methods , Bacterial Load , Fermentation , Saccharum/metabolism , Spores, Bacterial/growth & development
10.
Toxicon ; 216: 50-56, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35787893

ABSTRACT

Diagnostic tests for brown spider accidents are unavailable and impact treatment decisions, increasing costs and patient risks. In this work, we used for the first time a fast, simple, and visual method based on the loop-mediated isothermal amplification assay (LAMP) to detect Loxosceles envenomation. Using the DNA from L. similis legs, we observed a high sensitivity using this test since as low as 0.32 pg of DNA could be detected. This pH-dependent colorimetric assay was 64 times more sensitive than PCR to detect spider DNA. The test was specific for Loxosceles once no cross-reaction was observed when testing DNA from different agents that cause similar dermonecrotic injuries. The test allowed the detection of Loxosceles intermedia DNA from hair, serum, and exudate samples obtained from experimentally-envenomed rabbit within 72 h. The method sensitivity varied according to the sample and the collection time, reaching 100% sensitivity in serum and hair, respectively, 1 h and 24 h after the experimental envenomation. Due to its ease of execution, speed, sensitivity, and specificity, LAMP presents an excellent potential for identifying Loxosceles spp. Envenomation. This can reduce the burden on the Health System and the morbidity for the patient by implementing the appropriate therapy immediately.In addition, this work opens up the perspective to other venomous animal accident identification using LAMP.


Subject(s)
Spider Venoms , Spiders , Animals , Colorimetry , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Phosphoric Diester Hydrolases/genetics , Rabbits , Sensitivity and Specificity , Spider Venoms/genetics , Spider Venoms/toxicity , Spiders/genetics
11.
Int J Biol Macromol ; 216: 465-474, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35803408

ABSTRACT

The use of monoclonal antibodies (mAbs) in therapy is gradually advancing and discussions entail its safety, rentability and effectiveness. To this date, around a hundred mAbs have been approved by the FDA for the treatment of various diseases. Aiming for their large-scale production, recombinant DNA technology is mainly employed, and antibodies can be expressed in various eukaryotic and prokaryotic systems. Moreover, considering their heterologous origin and potential immunogenicity, various strategies have been developed for mAb humanization, considering that around 50 % of commercial mAbs are humanized. Hence, we introduce LimAb7, a mouse mAb capable of binding and neutralizing brown spider's Loxosceles intermedia dermonecrotic toxins in vivo/in vitro. This antibody has been produced in mouse and humanized scFv and diabody formats, however results indicated losses in antigen-binding affinity, stability, and neutralizing ability. Intending to develop evolved, stable, and neutralizing antibody fragments, we report for the first time the design of humanized antibody V-domains produced as Fab fragments, against spider venom toxins. Improvements in constructs were observed regarding their physicochemical stability, target binding and binding pattern maintenance. As their neutralizing features remain to be characterized, we believe this data sheds new light on antibody humanization by producing a parental molecule in different recombinant formats.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin Fab Fragments , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Mice
12.
Mol Immunol ; 151: 231-241, 2022 11.
Article in English | MEDLINE | ID: mdl-36179605

ABSTRACT

The antibody repertoire (Rep-seq) sequencing revolutionized the diversity of antigen B cell receptor studies, allowing deep and quantitative analysis to decipher the role of adaptive immunity in health and disease. Particularly, horse (Equus caballus) polyclonal antibodies have been produced and used since the century XIX to treat and prophylaxis diphtheria, tuberculosis, tetanus, pneumonia, and, more recently, COVID-19. However, our knowledge about the horse B cell receptors repertories is minimal. We present a deep horse antibody heavy chain repertoire (IGH) characterization of non-infected horses using NGS (Next generation sequencing). This study obtained a mean of 248,169 unique IgM clones and 66,141 unique IgG clones from four domestic adult horses. Rarefaction analysis showed sequence coverage was between 52 % and 82 % in IgM and IgG isotypes. We observed that besides horses antibody can use all functional IGHV genes, around 80 % of their antibodies use only three IGHV gene segments, and around 55 % use only one IGHJ gene segment. This limited VJ diversity seems to be compensated by the junctional diversity of these antibodies. We observed that the junctional diversity in horse antibodies is widespread, present in more than 90 % of horse antibodies. Besides this, the length of this region seems to be higher in horse antibodies than in other species. N1 and N2 nucleotides addition range from 0 to 111 nucleotides. In addition, around 45 % of the antibody clones have more than ten nucleotides in both the N1 and N2 junction regions. This diversity mechanism may be one of the most important in providing variability to the equine antibody repertoire. This study provides new insights regarding horse antibody composition, diversity generation, and particularities compared to other species, such as the frequency and length of N nucleotide addition. This study also points out the urgent need to better characterize TdT in horses and other species to better understand antibody repertoire characteristics.


Subject(s)
COVID-19 , Animals , Antibody Diversity , Horses , Immunoglobulin G/genetics , Immunoglobulin M/genetics , Nucleotides , Receptors, Antigen, B-Cell/genetics
13.
Front Vet Sci ; 9: 852917, 2022.
Article in English | MEDLINE | ID: mdl-35711800

ABSTRACT

Loxosceles spp. (brown spiders) bites are responsible for the development of a syndrome consisting mainly of dermonecrotic lesions, and also systemic effects. Rabbits are one of the main experimental models used for better understanding the systemic and local effects of Loxosceles venom. The aim of this study is to evaluate the toxic and protective effects of rabbits immunized with Loxosceles spp. venom. Male New Zealand rabbits were allocated as a control group (CG; n = 5) that received adjuvant (Montanide) and phosphate-buffer saline (PBS), or as venom group (VG; n = 5) that received 21 µg of Loxosceles venom using Montanide as adjuvant. After five immunization cycles, a trial with 7 µg of Loxosceles intermedia (L. intermedia) venom was performed, and dermonecrotic lesions were measured. The rabbits were then euthanized, and their organs were collected for histopathology analysis. Rabbits that had undergone Loxosceles venom immunization protocol showed minor clinical disturbances during the experimental period. The used immunization protocol protected the rabbits against the toxic effect of the Loxosceles venom because they showed minor clinical disturbances during the experimental period.

14.
Toxins (Basel) ; 14(5)2022 05 13.
Article in English | MEDLINE | ID: mdl-35622586

ABSTRACT

Bites of brown spiders (Loxosceles spp.) are responsible for dermonecrotic lesions and potentially systemic envenoming that can lead to death. The only effective therapy is the use of the antivenom, usually produced in horses. However, little is known about the consequences of the systematic use of the Loxosceles venom and adjuvants and of the bleedings on antivenom-producing horses. Thus, the aim of this study was to evaluate the clinical changes in horses in their first immunization protocol for Loxosceles antivenom production. Eleven healthy horses, never immunized, were evaluated in three different periods: T0 (before immunization); T1 (after their first venom immunization); and T2 (after their first bleeding). Horses were clinically evaluated, sampled for blood, and underwent electrocardiographic (ECG) recordings. Several suppurated subcutaneous abscesses occurred due to the use of Freund's adjuvants and thrombophlebitis due to systematic venipunctures for the bleeding procedures. ECG showed arrhythmias in few horses in T2, such as an increase in T and R waves. In summary, the immunization protocol impacted on horses' health, especially after bleeding for antivenom procurement.


Subject(s)
Spider Venoms , Spiders , Animals , Antivenins/pharmacology , Horses , Immunization/veterinary , Phosphoric Diester Hydrolases
15.
Biomedicines ; 11(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36672587

ABSTRACT

Loxoscelism is the clinical condition triggered after the bite of spiders of the genus Loxosceles. The main species involved in accidents in South America are L. intermedia, L. laeta, and L. gaucho. The only specific treatment is the anti-Loxosceles serum produced with crude venoms. As phospholipases D (PLDs) trigger most of the effects observed in accidents, we developed and evaluated second-generation sera using mutated PLDs as antigens. Three isoforms of PLDs with site-directed mutations without biological activities were used for rabbit immunizations: D32A-E34A (L. gaucho), W230A (L. intermedia), and H12A-H47A (L. laeta). Sera were produced using crude venoms of three species of Loxosceles enriched with mutated recombinant PLDs (MIX) or using only mutated PLDs (REC). Immunizations stimulated the immune system from the second immunization with higher antibody production in the REC group. In vivo neutralization assays demonstrated that both sera reduced edema and dermonecrosis caused by Loxosceles intermedia crude venom. Follow-up of animals during the immunization protocols and in the neutralization assays demonstrated that the mutated proteins and the sera are safe. Results demonstrate the potential of using mutated recombinant PLDs in total or partial replacement of Loxosceles venoms in animal immunizations to produce anti-Loxosceles sera for treatments of Loxoscelism.

16.
Appl Microbiol Biotechnol ; 90(2): 713-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21336685

ABSTRACT

A novel low-cost medium was developed from by-products and wastes from the ethanol agro-industry to replace commercial media in the production of a steam sterilization biological indicator (BI). Various recovery media were developed using soybean or sugarcane molasses and vinasse to prepare a self-contained BI. Media performance was evaluated by viability and heat resistance (D(121 °C) value) according to regulatory standards. A medium produced with a soybean vinasse ratio of 1:70 (1.4%) (w/v) produced the results, with D(121 °C)=2.9±0.5 min and Usk=12.7±2.1 min. The addition of 0.8% (w/v) yeast extract improved the germination of heat-damaged spores. The pH variation from 6.0 to 7.3 resulted in a gradual increase in the D(121 °C) value. The absence of calcium chloride resulted in a decrease in germination, while no significant differences were observed with starch addition. Soybean vinasses may thus be used as the main component of a culture medium to substitute for commercial media in the production of self-contained biological indicators. The use of ethanol production waste in this biotechnological process realized a reliable performance, minimized the environmental impact, and decreased BI production costs while producing a high quality product.


Subject(s)
Culture Media/chemistry , Geobacillus stearothermophilus/growth & development , Glycine max/chemistry , Sterilization , Culture Media/metabolism , Ethanol/metabolism , Geobacillus stearothermophilus/metabolism , Hot Temperature , Industrial Waste , Microbial Viability , Molasses , Glycine max/metabolism , Spores, Bacterial/growth & development
17.
Biomedicines ; 9(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801128

ABSTRACT

Phospholipases-D (PLDs) found in Loxosceles spiders' venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents-L. gaucho and L. laeta-were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.

18.
Int J Biol Macromol ; 187: 66-75, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34246677

ABSTRACT

Loxoscelism is the most dangerous araneism form in Brazil and antivenom therapy is the recommended treatment. Antivenom is produced by horse immunization with Loxosceles spider venom, which is toxic for the producer animal. Moreover, due to the high amount of venom required for horse hyperimmunization, new strategies for antigens obtention have been proposed. In this sense, our research group has previously produced a non-toxic recombinant multiepitopic protein derived from Loxosceles toxins (rMEPLox). rMEPLox was a successful immunogen, being able to induce the production of neutralizing antibodies, which could be used in the Loxoscelism treatment. However, rMEPLox obtention procedure requires optimization, as its production needs to be scaled up to suit antivenom manufacture. Therefore, an effective protocol development for rMEPlox production would be advantageous. To achieve this objective, we evaluated the influence of different cultivation conditions for rMEPLox optimum expression. The optimum conditions to obtain large amounts of rMEPlox were defined as the use of C43(DE3)pLysS as a host strain, 2xTY medium, 0.6 mM IPTG, biomass pre induction of OD600nm = 0.4 and incubation at 30 °C for 16 h. Following the optimized protocol, 39.84 mg/L of soluble rMEPLox was obtained and tested as immunogen. The results show that the obtained rMEPLox preserved the previously described immunogenicity, and it was able to generate antibodies that recognize different epitopes of the main Loxosceles venom toxins, which makes it a promising candidate for the antivenom production for loxoscelism treatment.


Subject(s)
Escherichia coli , Gene Expression , Spiders/genetics , Animals , Antivenins/biosynthesis , Antivenins/genetics , Antivenins/immunology , Antivenins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Mice, Inbred BALB C , Phosphoric Diester Hydrolases/biosynthesis , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/immunology , Phosphoric Diester Hydrolases/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spider Venoms/biosynthesis , Spider Venoms/genetics , Spider Venoms/immunology , Spider Venoms/isolation & purification
19.
Front Mol Biosci ; 8: 706704, 2021.
Article in English | MEDLINE | ID: mdl-34222343

ABSTRACT

Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for predation and defense. Bites of these spiders most commonly produce a local dermonecrotic lesion with gravitational spread, edema and hemorrhage, which together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as hematological abnormalities and renal injury, are less frequent but more lethal. Some Loxosceles venom toxins have already been isolated and extensively studied, such as phospholipases D (PLDs), which have been recombinantly expressed and were proven to reproduce toxic activities associated to the whole venom. PLDs have a notable potential to be engineered and converted in non-toxic antigens to produce a new generation of antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as therapeutic agents. Other Loxosceles toxins have been identified and functionally characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK peptides). All these toxins were produced as recombinant molecules and are biologically active molecules that can be used as tools for the potential development of chemical candidates to tackle many medical and biological threats, acting, for instance, as antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents for cell studies. In addition, these recombinant toxins may be useful to develop a rational therapy for loxoscelism. This review summarizes the main candidates for the development of drugs and biotechnological inputs that have been described in Brown spider venoms.

20.
Int J Biol Macromol ; 183: 1607-1620, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34029585

ABSTRACT

Several classes of toxins are present in the venom of Brown spiders (Loxosceles genus), some of them are highly expressed and others are less expressed. In this work, we aimed to clone the sequence of a little expressed novel toxin from Loxosceles venom identified as a serine protease inhibitor (serpin), as well as to express and characterize its biochemical and biological properties. It was named LSPILT, derived from Loxoscelesserine protease inhibitor-like toxin. Multiple alignment analysis revealed high identity between LSPILT and other serpin molecules from spiders and crab. LSPILT was produced in baculovirus-infected insect cells, resulting in a 46-kDa protein fused to a His-tag. Immunological assays showed epitopes in LSPILT that resemble native venom toxins of Loxosceles spiders. The inhibitory activity of LSPILT on trypsin was found both by reverse zymography and fluorescent gelatin-degradation assay. Additionally, LSPILT inhibited the complement-dependent lysis of Trypanosoma cruzi epimastigotes, reduced thrombin-dependent clotting and suppressed B16-F10 melanoma cells migration. Results described herein prove the existence of conserved serpin-like toxins in Loxosceles venoms. The availability of a recombinant serpin enabled the determination of its biological and biochemical properties and indicates potential applications in future studies regarding the pathophysiology of the envenoming or for biotechnological purposes.


Subject(s)
Antineoplastic Agents/pharmacology , Fibrinolytic Agents/pharmacology , Serpins/genetics , Serpins/metabolism , Spiders/metabolism , Trypanosoma cruzi/drug effects , Amino Acid Sequence , Animals , Baculoviridae , Base Sequence , Cell Line, Tumor , Cell Movement/drug effects , Cloning, Molecular , Mice , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Rabbits , Sf9 Cells , Spider Venoms/genetics , Spider Venoms/metabolism , Spiders/genetics , Trypsin
SELECTION OF CITATIONS
SEARCH DETAIL