Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473946

ABSTRACT

Cypridina luciferin (CypL) is a marine natural product that functions as the luminous substrate for the enzyme Cypridina luciferase (CypLase). CypL has two enantiomers, (R)- and (S)-CypL, due to its one chiral center at the sec-butyl moiety. Previous studies reported that (S)-CypL or racemic CypL with CypLase produced light, but the luminescence of (R)-CypL with CypLase has not been investigated. Here, we examined the luminescence of (R)-CypL, which had undergone chiral separation from the enantiomeric mixture, with a recombinant CypLase. Our luminescence measurements demonstrated that (R)-CypL with CypLase produced light, indicating that (R)-CypL must be considered as the luminous substrate for CypLase, as in the case of (S)-CypL, rather than a competitive inhibitor for CypLase. Additionally, we found that the maximum luminescence intensity from the reaction of (R)-CypL with CypLase was approximately 10 fold lower than that of (S)-CypL with CypLase, but our kinetic analysis of CypLase showed that the Km value of CypLase for (R)-CypL was approximately 3 fold lower than that for (S)-CypL. Furthermore, the chiral high-performance liquid chromatography (HPLC) analysis of the reaction mixture of racemic CypL with CypLase showed that (R)-CypL was consumed more slowly than (S)-CypL. These results indicate that the turnover rate of CypLase for (R)-CypL was lower than that for (S)-CypL, which caused the less efficient luminescence of (R)-CypL with CypLase.


Subject(s)
Crustacea , Luciferins , Animals , Kinetics , Luciferases , Firefly Luciferin , Luminescent Measurements , Luminescence
2.
Biosci Biotechnol Biochem ; 86(3): 368-373, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35025982

ABSTRACT

Lucensosergia lucens is a luminous marine shrimp that has been suggested to use a coelenterazine-dependent luminescence system. However, the genetic information related to the luminescence system is lacking. Our RNA-Seq analysis of this shrimp did not show the existence of known or homologous coelenterazine-dependent luciferase genes. Subsequent biochemical analyses suggested that the shrimp possessed unknown proteinaceous components for coelenterazine luminescence.


Subject(s)
Luminescence
3.
Proc Natl Acad Sci U S A ; 116(45): 22673-22682, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31636183

ABSTRACT

Despite the omnipresence of specific host-symbiont associations with acquisition of the microbial symbiont from the environment, little is known about how the specificity of the interaction evolved and is maintained. The bean bug Riptortus pedestris acquires a specific bacterial symbiont of the genus Burkholderia from environmental soil and harbors it in midgut crypts. The genus Burkholderia consists of over 100 species, showing ecologically diverse lifestyles, and including serious human pathogens, plant pathogens, and nodule-forming plant mutualists, as well as insect mutualists. Through infection tests of 34 Burkholderia species and 18 taxonomically diverse bacterial species, we demonstrate here that nonsymbiotic Burkholderia and even its outgroup Pandoraea could stably colonize the gut symbiotic organ and provide beneficial effects to the bean bug when inoculated on aposymbiotic hosts. However, coinoculation revealed that the native symbiont always outcompeted the nonnative bacteria inside the gut symbiotic organ, explaining the predominance of the native Burkholderia symbiont in natural bean bug populations. Hence, the abilities for colonization and cooperation, usually thought of as specific traits of mutualists, are not unique to the native Burkholderia symbiont but, to the contrary, competitiveness inside the gut is a derived trait of the native symbiont lineage only and was thus critical in the evolution of the insect gut symbiont.


Subject(s)
Burkholderia/physiology , Heteroptera/microbiology , Host-Pathogen Interactions , Intestines/microbiology , Symbiosis , Animals , Models, Biological
4.
Mol Ecol ; 30(8): 1864-1879, 2021 04.
Article in English | MEDLINE | ID: mdl-33031624

ABSTRACT

Understanding the genetic causes of evolutionary diversification is challenging because differences across species are complex, often involving many genes. However, cases where single or few genetic loci affect a trait that varies dramatically across a radiation of species provide tractable opportunities to understand the genetics of diversification. Here, we begin to explore how diversification of bioluminescent signals across species of cypridinid ostracods ("sea fireflies") was influenced by evolution of a single gene, cypridinid-luciferase. In addition to emission spectra ("colour") of bioluminescence from 21 cypridinid species, we report 13 new c-luciferase genes from de novo transcriptomes, including in vitro assays to confirm function of four of those genes. Our comparative analyses suggest some amino acid sites in c-luciferase evolved under episodic diversifying selection and may be associated with changes in both enzyme kinetics and colour, two enzymatic functions that directly impact the phenotype of bioluminescent signals. The analyses also suggest multiple other amino acid positions in c-luciferase evolved neutrally or under purifying selection, and may have impacted the variation of colour of bioluminescent signals across genera. Previous mutagenesis studies at candidate sites show epistatic interactions, which could constrain the evolution of c-luciferase function. This work provides important steps toward understanding the genetic basis of diversification of behavioural signals across multiple species, suggesting different evolutionary processes act at different times during a radiation of species. These results set the stage for additional mutagenesis studies that could explicitly link selection, drift, and constraint to the evolution of phenotypic diversification.


Subject(s)
Crustacea , Fireflies , Animals , Fireflies/genetics , Luciferases/genetics , Phenotype
5.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053850

ABSTRACT

The enzyme Cypridina luciferase (CLase) enables Cypridina luciferin to emit light efficiently through an oxidation reaction. The catalytic mechanism on the substrate of CLase has been studied, but the details remain to be clarified. Here, we examined the luminescence of Cypridina luciferin in the presence of several proteins with drug-binding ability. Luminescence measurements showed that the mixture of human plasma alpha 1-acid glycoprotein (hAGP) and Cypridina luciferin produced light. The total value of the luminescence intensity over 60 s was over 12.6-fold higher than those in the presence of ovalbumin, human serum albumin, or bovine serum albumin. In the presence of heat-treated hAGP, the luminescence intensity of Cypridina luciferin was lower than in the presence of intact hAGP. Chlorpromazine, which binds to hAGP, showed an inhibitory effect on the luminescence of Cypridina luciferin, both in the presence of hAGP and a recombinant CLase. Furthermore, BlastP analysis showed that hAGP had partial amino acid sequence similarity to known CLases in the region including amino acid residues involved in the drug-binding ability of hAGP. These findings indicate enzymological similarity between hAGP and CLase and provide insights into both the enzymological understanding of CLase and development of a luminescence detection method for hAGP.


Subject(s)
Luciferases/metabolism , Luminescence , Luminescent Measurements , Orosomucoid/metabolism , Humans , Hydrogen-Ion Concentration , Luciferases/chemistry , Luciferases/genetics , Luminescent Measurements/methods , Molecular Structure , Temperature
6.
Angew Chem Int Ed Engl ; 59(38): 16485-16489, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32543104

ABSTRACT

Mechanochemical analogues have recently been established for several enzymatic reactions, but they require periodic interruption of the reaction for sampling, dissolution, and (bio)chemical analysis to monitor their progress. By applying a mechanochemical procedure to induce bioluminescence analogous to that used by the marine ostracod Cypridina (Vargula) hilgendorfii, here we demonstrate that the light emitted by a bioluminescent reaction can be used to directly monitor the progress of a mechanoenzymatic reaction without sampling. Mechanical treatment of Cypridina luciferase with luciferin generates bright blue light which can be readily detected and analyzed spectroscopically. This mechanically assisted bioluminescence proceeds through a mechanism identical to that of bioluminescence in solution, but has higher activation energy due to being diffusion-controlled in the viscous matrix. The results suggest that luciferases could be used as light-emissive reporters of mechanoenzymatic reactions.


Subject(s)
Luciferases/metabolism , Luminescent Measurements , Animals , Crustacea , Firefly Luciferin/chemistry , Firefly Luciferin/metabolism , Luciferases/chemistry , Molecular Structure
7.
Photochem Photobiol Sci ; 18(5): 1212-1217, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30834414

ABSTRACT

Bioluminescence is widely used in biosensors. Firefly luciferase-based bioluminescent sensors are among the most popular ones. Firefly luciferases are pH-sensitive, displaying a large red shift at acidic pH, a property that has been considered undesirable for most applications. Currently, biosensors that can detect intracellular pH are in demand, and some fluorescent biosensors are available. However, pH sensors using bioluminescence have not been used yet. Thus, we decided to harness a firefly luciferase to measure the intracellular pH in mammalian cells. For this purpose, we engineered the luciferase derived from Macrolampis sp2 firefly to localize it on the cytosol or nucleus, in order to observe pH variation in these compartments during biological activities. We first calibrated the emission ratios (R = Igreen/Ired) at different pH values. As expected, we observed a red shift of light emission under acidic conditions when the cells were subjected to different pH conditions in the presence of the K+/H+ ionophore, nigericin. Based on these results, we concluded that this firefly luciferase can be used as a diagnostic tool for measuring the intracellular pH variation in pathogenic cells or in cells during apoptosis. This is the first example of real time-monitoring of pH change using color tuning luciferase.


Subject(s)
Biosensing Techniques , Luciferases, Firefly/metabolism , Luminescent Measurements , Organelles/metabolism , Animals , COS Cells , Chlorocebus aethiops , Fireflies , Hydrogen-Ion Concentration , Organelles/chemistry
8.
Int J Syst Evol Microbiol ; 68(7): 2370-2374, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29863457

ABSTRACT

A Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacterium, designated strain RPE64T, was isolated from the gut symbiotic organ of the bean bug Riptortus pedestris, collected in Tsukuba, Japan, in 2007. 16S rRNA gene sequencing showed that this strain belongs to the Burkholderia glathei clade, exhibiting the highest sequence similarity to Burkholderia peredens LMG 29314T (100 %), Burkholderia turbans LMG 29316T (99.52 %) and Burkholderia ptereochthonis LMG 29326T (99.04 %). Phylogenomic analyses based on 107 single-copy core genes and Genome blast Distance Phylogeny confirmed B. peredens LMG 29314T, B. ptereochthonis LMG 29326T and several uncultivated, endophytic Burkholderia species as its nearest phylogenetic neighbours. Digital DNA-DNA hybridization experiments unambiguously demonstrated that strain RPE64T represents a novel species in this lineage. The G+C content of its genome was 63.2 mol%. The isoprenoid quinone was ubiquinone 8 and the predominant fatty acid components were C16 : 0, C18 : 1ω7c and C17 : 0 cyclo. The absence of nitrate reduction and the capacity to grow at pH 8 clearly differentiated strain RPE64T from related Burkholderia species. Based on these genotypic and phenotypic characteristics, strain RPE64T is classified as representing a novel species of the genus Burkholderia, for which the name Burkholderia insecticola sp. nov. is proposed. The type strain is RPE64T (=NCIMB 15023T=JCM 31142T).


Subject(s)
Burkholderia/classification , Digestive System/microbiology , Heteroptera/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , Burkholderia/genetics , Burkholderia/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Japan , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis , Ubiquinone/chemistry
9.
Protein Expr Purif ; 133: 102-109, 2017 05.
Article in English | MEDLINE | ID: mdl-28288897

ABSTRACT

Cypridina noctiluca luciferase has been utilized for biochemical and molecular biological applications, including bioluminescent enzyme immunoassays, far-red luminescence imaging, and high-throughput reporter assays. Some of these applications require a large amount of purified luciferase. However, conventional protein expression systems are not capable of producing sufficient quantities of protein with a high quality and purity without laborious and costly purification processes. To improve the productivity and expand the breadth of possibilities for Cypridina luciferase applications, we employed a variety of secretion expression systems, including yeast, mammalian cells, and silk worms. In this study, we established a simple production procedure using plant cell cultures. The plant cell culture BY-2 efficiently secreted luciferase, which was easily purified using a simple one-step ion-exchange chromatography method. The production yield was 20-30 mg of luciferase per liter of culture medium, and its Km for the luciferin (0.45 µM) was similar to that of the native protein. Additionally, we characterized its glycosylation pattern and confirmed that the two potential N-glycosylation sites were modified with plant-type oligosaccharide chains. Interestingly, the oligosaccharide chains could be trimmed without any detectable decrease in recombinant protein activity. Therefore, the results of our study indicate that this method offers a more cost-effective production method for Cypridina luciferase than conventional methods.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Crustacea/genetics , Luciferases , Plant Cells/metabolism , Animals , Arthropod Proteins/biosynthesis , Arthropod Proteins/genetics , Crustacea/enzymology , Glycosylation , Luciferases/biosynthesis , Luciferases/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
10.
Appl Environ Microbiol ; 80(3): 1126-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24296497

ABSTRACT

Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited ß-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.


Subject(s)
Cytoplasm/chemistry , Fatty Acids, Nonesterified/analysis , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Glucose/metabolism , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Solvents , Stress, Physiological , Temperature
11.
Appl Environ Microbiol ; 79(22): 6998-7005, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24014527

ABSTRACT

Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.


Subject(s)
1-Butanol/metabolism , Bacteria/classification , Bacteria/drug effects , Butanols/metabolism , Gene Expression Regulation, Bacterial , Bacteria/genetics , Bacteria/isolation & purification , Cloning, Molecular , Cyclopropanes/chemistry , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Fatty Acids/chemistry , Genes, Bacterial , Hydrophobic and Hydrophilic Interactions , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Gene ; 850: 146917, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36174905

ABSTRACT

Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growth and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.


Subject(s)
Coleoptera , Railroads , Animals , Female , Phylogeny , DNA Transposable Elements , Odorants , Coleoptera/genetics , Coleoptera/metabolism , Luciferases/metabolism , Morphogenesis , Pheromones
13.
R Soc Open Sci ; 10(3): 230039, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36998762

ABSTRACT

Bioluminescence, a phenomenon observed widely in organisms ranging from bacteria to metazoans, has a significant impact on the behaviour and ecology of organisms. Among bioluminescent organisms, Polycirrus, which has unique emission wavelengths, has received attention, and advanced studies such as RNA-Seq have been conducted, but they are limited to a few cases. In addition, accurate species identification is difficult due to lack of taxonomic organization. In this study, we conducted comprehensive taxonomic survey of Japanese Polycirrus based on multiple specimens from different locations and described as three new species: Polycirrus onibi sp. nov., P. ikeguchii sp. nov. and P. aoandon sp. nov. The three species can be distinguished from the known species based on the following characters: (i) arrangement of mid-ventral groove, (ii) arrangement of notochaetigerous segments, (iii) type of neurochaetae uncini, and (iv) arrangement of nephridial papillae. By linking the bioluminescence phenomenon with taxonomic knowledge, we established a foundation for future bioluminescent research development. We also provide a brief phylogenetic tree based on cytochrome c oxidase subunit I (COI) sequences to discuss the evolution of bioluminescence and the direction of future research.

14.
Anal Sci ; 38(12): 1555-1562, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36205879

ABSTRACT

Alpha 1-acid glycoprotein (AGP) is an acute phase protein in mammals, including humans. The amount of AGP in human serum varies in response to certain diseases; thus, many efforts have been made to develop methods for quantifying human AGP. We recently discovered that luminescence occurs merely by mixing Cypridina luciferin with human AGP under human serum-free neutral or basic buffer conditions. In this study, we tested an application of Cypridina luciferin for quantifying AGP contained in human serum. Our luminescence spectrum measurements of Cypridina luciferin with human serum samples showed that the maximum emission wavelength with human serum (480 nm) differed from that with human AGP (464 nm) due to the abundant presence of endogenous human serum albumin (HSA). Furthermore, the luminescence intensities of Cypridina luciferin with human AGP in HSA-depleted human serum were consistent with those in a human serum-free basic buffer, but those in human serum were not. These results indicated that depletion of HSA in human serum was required to use Cypridina luciferin for quantifying AGP in human serum. Additionally, we found that the luminescence intensity of Cypridina luciferin with bovine AGP was approximately tenfold lower than that with human AGP.


Subject(s)
Luciferins , Orosomucoid , Humans , Animals , Cattle , Orosomucoid/metabolism , Crustacea/metabolism , Serum Albumin, Human/metabolism , Luminescent Measurements , Protein Binding , Mammals/metabolism
15.
FEBS Lett ; 596(15): 1921-1931, 2022 08.
Article in English | MEDLINE | ID: mdl-35344590

ABSTRACT

Carotenoids with rare 6-hydroxy-3-keto-ε-end groups, such as piprixanthin, vitixanthin, or cochloxanthin, found in manakin birds or plants, are rare carotenoids with high antioxidant activity. The same chemical structure is found in abscisic acid or blumenol, apocarotenoids found in plants or fungi. In this study, we serendipitously discovered that the promiscuous activity of the ß-carotene hydroxylase CrtZ, a diiron-containing membrane protein, can catalyze the formation of 6-hydroxy-3-keto-ε-end by using epoxycarotenoids antheraxanthin or violaxanthin as substrate. We suggest that the reaction mechanism is similar to that of a rhodoxanthin biosynthetic enzyme. Our results provide a further understanding of the reaction mechanism of diiron-containing ß-carotene hydroxylases, as well as insight into the biosynthesis of natural compounds with 6-hydroxy-3-keto-ε-end carotenoid derivatives.


Subject(s)
Carotenoids , Mixed Function Oxygenases , Carotenoids/metabolism , Mixed Function Oxygenases/metabolism
16.
Methods Mol Biol ; 2524: 3-15, 2022.
Article in English | MEDLINE | ID: mdl-35821459

ABSTRACT

The marine fireworm Odontosyllis spp. produce the bluish-green bioluminescence (BL). Despite years of research, molecular mechanisms of this unique luciferin-luciferase reaction have not been elucidated. Recently, the genes encoding luciferases of O. undecimdonta and O. enopla have been identified. Here, we describe gene cloning techniques for the luciferase of Odontosyllis spp. from a small number of specimens using highly sensitive mass spectrometry analysis in combination with RNA-sequencing. The luciferase activities of the cloned cDNAs are confirmed by BL assay in vitro using recombinant protein expressed in mammalian cells.


Subject(s)
Polychaeta , Animals , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Luciferases/metabolism , Mammals/genetics , Recombinant Proteins/metabolism
17.
Front Bioeng Biotechnol ; 10: 774786, 2022.
Article in English | MEDLINE | ID: mdl-35198542

ABSTRACT

Cypridina noctiluca luciferase (CLuc) is a secreted luminescent protein that reacts with its substrate (Cypridina luciferin) to emit light. CLuc is known to be a thermostable protein and has been used for various research applications, including in vivo imaging and high-throughput reporter assays. Previously, we produced a large amount of recombinant CLuc for crystallographic analysis. However, this recombinant protein did not crystallize, probably due to heterogeneous N-glycan modifications. In this study, we produced recombinant CLuc without glycan modifications by introducing mutations at the N-glycan modification residues using mammalian Expi293F cells, silkworms, and tobacco Bright Yellow-2 cells. Interestingly, recombinant CLuc production depended heavily on the expression hosts. Among these selected hosts, we found that Expi293F cells efficiently produced the recombinant mutant CLuc without significant effects on its luciferase activity. We confirmed the lack of N-glycan modifications for this mutant protein by mass spectrometry analysis but found slight O-glycan modifications that we estimated were about 2% of the ion chromatogram peak area for the detected peptide fragments. Moreover, by using CLuc deletion mutants during the investigation of O-glycan modifications, we identified amino acid residues important to the luciferase activity of CLuc. Our results provide invaluable information related to CLuc function and pave the way for its crystallographic analysis.

18.
J Agric Food Chem ; 69(17): 5076-5085, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33890772

ABSTRACT

Capsanthin, a characteristic red carotenoid found in the fruits of red pepper (Capsicum annuum), is widely consumed as a food and a functional coloring additive. An enzyme catalyzing capsanthin synthesis was identified as capsanthin/capsorubin synthase (CCS) in the 1990s, but no microbial production of capsanthin has been reported. We report here the first successful attempt to biosynthesize capsanthin in Escherichia coli by carotenoid-pathway engineering. Our initial attempt to coexpress eight enzyme genes required for capsanthin biosynthesis did not detect the desired product. The dual activity of CCS as a lycopene ß-cyclase as well as a capsanthin/capsorubin synthase likely complicated the task. We demonstrated that a particularly high expression level of the CCS gene and the minimization of byproducts by regulating the seven upstream carotenogenic genes were crucial for capsanthin formation in E. coli. Our results provide a platform for further study of CCS activity and capsanthin production in microorganisms.


Subject(s)
Capsicum , Capsicum/genetics , Escherichia coli/genetics , Plant Proteins/genetics , Xanthophylls
19.
Sci Rep ; 11(1): 19097, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580316

ABSTRACT

Terebellidae worms have large numbers of tentacles responsible for various biological functions. Some Terebellidae worms whose tentacles emit light are found around the world, including exceptional violet-light-emitting Polycirrus spp. found in Europe and North America. However, there is no video-recorded observation of the luminous behavior of such unique species in nature, and the genetic information related to their ecology are lacking. Here, for the first time, we video-recorded the violet-light-emitting behavior of an undescribed Japanese worm in its natural habitat. The worm was designated as Polycirrus sp. ISK based on morphological observations, and the luminescence spectrum showed a peak at 444 nm, which is an exceptionally short wavelength for bioluminescence in a shallow coastal water environment. An analysis of differentially expressing genes based on separate RNA-Seq analysis for the tentacles and the rest of body revealed the specific expression of genes that are probably involved in innate immunity in the tentacles exposed to predators. We also found a Renilla luciferase homologous gene, but coelenterazine was not detected in the worm extract by analyses using a liquid chromatography and a recombinant Renilla luciferase. These results will promote an understanding of the ecology and luminescence mechanisms of luminous Polycirrus spp.

20.
Sci Rep ; 9(1): 13015, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506523

ABSTRACT

The fireworms Odontosyllis spp. are globally distributed and well-known for their characteristic and fascinating mating behavior, with secreted mucus emitting bluish-green light. However, knowledge about the molecules involved in the light emission are still scarce. The fireworms are believed to emit light with a luciferin-luciferase reaction, but biochemical evidence of the luciferase is established for only one species living in Japan and no information is available for its luciferin structure. In this study, we identified a luciferase gene from a related Puerto Rican fireworm. We identified eight luciferase-like genes in this Puerto Rican fireworm, finding amino acid identities between Japanese and Puerto Rican luciferase-like genes to be less than 60%. We confirmed cross reactivity of extracts of the Japanese fireworm luciferin with a recombinant Puerto Rican luciferase (PR1). The emission spectrum of recombinant PR1 was similar to the crude extract of the native luciferase, suggesting that PR1 is a functional luciferase of this Puerto Rican fireworm. Our results indicate that the molecular mechanism of luminescence is widely conserved among fireworms.


Subject(s)
Luciferases/metabolism , Luminescence , Polychaeta/enzymology , Polychaeta/genetics , Recombinant Proteins/metabolism , Amino Acid Sequence , Animals , Japan , Luciferases/genetics , Polychaeta/metabolism , Puerto Rico , Recombinant Proteins/genetics , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL