Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
FASEB J ; 37(1): e22676, 2023 01.
Article in English | MEDLINE | ID: mdl-36468834

ABSTRACT

The G protein-coupled receptors, GPR43 (free fatty acid receptor 2, FFA2) and GPR41 (free fatty acid receptor 3, FFA3), are activated by short-chain fatty acids produced under various conditions, including microbial fermentation of carbohydrates. Previous studies have implicated this receptor energy homeostasis and immune responses as well as in cell growth arrest and apoptosis. Here, we observed the expression of both receptors in human blood cells and a remarkable enhancement in leukemia cell lines (HL-60, U937, and THP-1 cells) during differentiation. A reporter assay revealed that GPR43 is coupled with Gαi and Gα12/13 and is constitutively active without any stimuli. Specific blockers of GPR43, GLPG0974 and CATPB function as inverse agonists because treatment with these compounds significantly reduces constitutive activity. In HL-60 cells, enhanced expression of GPR43 led to growth arrest through Gα12/13 . In addition, the blockage of GPR43 activity in these cells significantly impaired their adherent properties due to the reduction of adhesion molecules. We further revealed that enhanced GPR43 activity induces F-actin formation. However, the activity of GPR43 did not contribute to butyrate-induced apoptosis in differentiated HL-60 cells because of the ineffectiveness of the inverse agonist on cell death. Collectively, these results suggest that GPR43, which possesses constitutive activity, is crucial for growth arrest, followed by the proper differentiation of leukocytes.


Subject(s)
Fatty Acids, Volatile , Leukocytes , Receptors, Cell Surface , Humans , Fatty Acids, Volatile/metabolism , Leukocytes/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Cell Differentiation , HL-60 Cells
2.
Sci Rep ; 12(1): 11790, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35821061

ABSTRACT

Bitter taste receptors (T2Rs) are G protein-coupled receptors involved in the perception of bitter taste on the tongue. In humans, T2Rs have been found in several sites outside the oral cavity. Although T2R38 has been reported to be expressed on peripheral lymphocytes, it is poorly understood whether T2R38 plays immunological roles in inflammatory skin diseases such as atopic dermatitis (AD). Then, we first confirmed that T2R38 gene expression was higher in lesional skin of AD subjects than healthy controls. Furthermore, skin T2R38 expression levels were correlated with serum thymus and activation-regulated chemokine and IgE levels in AD patients. In lesional skin of AD, section staining revealed that CD3+ T cells in the dermis were T2R38 positive. In addition, flow cytometry analysis showed T2R38 expression in skin T cells. Migration assays using T2R38-transduced Jurkat T cell leukemia cells revealed that T2R38 agonists exerted a dose-dependent migration inhibitory effect. Moreover, skin tissue extracts, as well as supernatants of cultured HaCaT keratinocytes, caused T2R38-dependent migration inhibition, indicating that there should be an endogenous ligand for T2R38 in the skin epidermis. These findings implicate T2R38 as a migratory inhibitory receptor on the skin-infiltrating lymphocytes and as a therapeutic target for allergic/inflammatory skin diseases.


Subject(s)
Dermatitis, Atopic , Taste Buds , Cell Movement , Dermatitis, Atopic/genetics , Humans , Lymphocytes/metabolism , Receptors, G-Protein-Coupled/metabolism , Taste , Taste Buds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL