Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Cell Sci ; 133(5)2020 03 10.
Article in English | MEDLINE | ID: mdl-31964709

ABSTRACT

B-lymphocytes recognize antigen via B-cell antigen receptors (BCRs). This binding induces signaling, leading to B-cell activation, proliferation and differentiation. Early events of BCR signaling include reorganization of actin and membrane spreading, which facilitates increased antigen gathering. We have previously shown that the gap junction protein connexin43 (Cx43; also known as GJA1) is phosphorylated upon BCR signaling, and its carboxyl tail (CT) is important for BCR-mediated spreading. Here, specific serine residues in the Cx43 CT that are phosphorylated following BCR stimulation were identified. A chimeric protein containing the extracellular and transmembrane domains of CD8 fused to the Cx43 CT was sufficient to support cell spreading. Cx43 CT truncations showed that the region between amino acids 246-307 is necessary for B-cell spreading. Site-specific serine-to-alanine mutations (S255A, S262A, S279A and S282A) resulted in differential effects on both BCR signaling and BCR-mediated spreading. These serine residues can serve as potential binding sites for actin remodeling mediators and/or BCR signaling effectors; therefore, our results may reflect unique roles for each of these serines in terms of linking the Cx43 CT to actin remodeling.


Subject(s)
Connexin 43 , Serine , Actins , B-Lymphocytes , Connexin 43/genetics , Receptors, Antigen, B-Cell/genetics , Serine/genetics
2.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38804708

ABSTRACT

The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.


Subject(s)
Body Weight , Heterozygote , Histone Acetyltransferases , Mice, Knockout , Movement Disorders , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Animals , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/deficiency , Female , Male , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Movement Disorders/genetics , Movement Disorders/pathology , Embryo, Mammalian/metabolism , Mice , Brain/pathology , Brain/metabolism , Genes, Lethal , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL