Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.086
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 18(7): 813-823, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28530713

ABSTRACT

The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.


Subject(s)
Autoimmune Diseases/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Immunologic Deficiency Syndromes/genetics , Adrenal Cortex Hormones/therapeutic use , Adult , Autoimmune Diseases/complications , Colitis/complications , Colitis/genetics , Colitis/pathology , Female , Fever/complications , Fever/drug therapy , Fever/genetics , Haploinsufficiency , Heterozygote , Humans , Immunologic Deficiency Syndromes/complications , Lymphopenia/complications , Lymphopenia/genetics , Male , Middle Aged , Mutation , Pancytopenia/complications , Pancytopenia/drug therapy , Pancytopenia/genetics , Pedigree , Polymorphism, Single Nucleotide , Recurrence , Respiratory Tract Infections/complications , Respiratory Tract Infections/diagnostic imaging , Respiratory Tract Infections/genetics , Splenomegaly/complications , Splenomegaly/genetics , Syndrome , Tomography, X-Ray Computed , Young Adult
2.
Nature ; 590(7846): 480-485, 2021 02.
Article in English | MEDLINE | ID: mdl-33597756

ABSTRACT

Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle.


Subject(s)
Adipose Tissue/metabolism , Creatine Kinase, BB Form/metabolism , Creatine/metabolism , Thermogenesis , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/enzymology , Animals , Creatine Kinase, BB Form/deficiency , Creatine Kinase, BB Form/genetics , Cyclic AMP/metabolism , Energy Metabolism/genetics , Female , Glucose/metabolism , Homeostasis , Humans , Male , Mice , Mitochondria/metabolism , Obesity/enzymology , Obesity/genetics , Obesity/metabolism , Signal Transduction
3.
Article in English | MEDLINE | ID: mdl-37910294

ABSTRACT

Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity. Therefore, the objective of the present review is to evaluate the findings of the reported studies exploring the antitumor effects of coelomic fluid in the context of its possible utilization as a natural therapeutic agent to cure different types of cancer. The possible mechanisms underlying the coelomic fluid's anticancerous potential as well as the possibility for future development of cutting-edge therapeutic agents utilizing coelomic fluid-derived natural bioactive compounds to treat cancer disorders have been discussed along with future challenges. In addition, the feasibility of encapsulation of bioactive compounds derived from coelomic fluid with nanomaterials that could be further explored to attain more effective anticancer competence is discussed.

4.
Opt Express ; 32(4): 5582-5591, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439280

ABSTRACT

We present a novel implementation of conditional long short-term memory recurrent neural networks that successfully predict the spectral evolution of a pulse in nonlinear periodically-poled waveguides. The developed networks offer large flexibility by allowing the propagation of optical pulses with ranges of energies and temporal widths in waveguides with different poling periods. The results show very high agreement with the traditional numerical models. Moreover, we are able to use a single network to calculate both the real and imaginary parts of the pulse complex envelope, allowing for successfully retrieving the pulse temporal and spectral evolution using the same network.

5.
Arch Microbiol ; 206(7): 300, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861201

ABSTRACT

Microorganisms produce diverse classes of metabolites under various physiological conditions. Many bacterial strains have been reported to carry out the process of desulfurization in a cost-effective manner by converting dibenzothiophene (DBT) into 2-hydroxybiphenyl (2-HBP) and then using the 2-HBP as a carbon source for growth and development. Key rate-limiting factors and an increased concentration of 2HBP (400 µM) affect the biodesulfurization activity of bacteria through the produced metabolites. Thus, this study was designed to explore the nature of the metabolites produced by Rhodococcus erythropolis in the presence of DBT and 2HBP supplemented with a culture medium. A total of 330 metabolites were detected, and the key metabolites identified were 11Z-eicosaenoyl-EA, 1-carboxyethylisoleucine, 1(3)-glyceryl-PGF2alpha, taurine, 2-hydroxynicotinic acid, 4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol, and 10-nitrooleic acid. The supplementation of DBT and DBT-2HBP resulted in the differential regulation of these metabolites, either through downregulation or overexpression. Furthermore, at high concentrations of 2-HBP, 1-carboxyethylisoleucine, taurine, 2-hydroxynicotinic acid, and nicotinic acid were upregulated. This work proposes that the identified metabolites may play a role in bacteria-mediated desulphurization and could be beneficial in developing a cost-effective method of desulphurization for refining petroleum.


Subject(s)
Biphenyl Compounds , Petroleum , Rhodococcus , Thiophenes , Rhodococcus/metabolism , Rhodococcus/growth & development , Petroleum/metabolism , Biphenyl Compounds/metabolism , Thiophenes/metabolism , Biodegradation, Environmental , Culture Media/chemistry , Culture Media/metabolism , Sulfur/metabolism
6.
World J Urol ; 42(1): 221, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587648

ABSTRACT

PURPOSE: Fosfomycin has been used more frequently in managing uncomplicated urinary tract infections (UTIs) due to decreased compliance and increased multidrug-resistant bacteria. The aim of this network meta-analysis was to assess the efficacy of Fosfomycin compared to Nitrofurantoin, Trimethoprim-Sulfamethoxazole (TMP-SMX), and Ciprofloxacin in terms of clinical and microbiological cure alongside with other measurements. MATERIALS AND METHODS: We searched MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL). We included randomized control trials (RCTs) with uncomplicated UTI patients who received Fosfomycin, Nitrofurantoin, TMP-SMX, or Ciprofloxacin and reported the clinical or microbiological cure. We used Cochrane Risk of Bias Assessment Tool to assess the included studies' quality. R-software was used for all statistical analysis. We ranked all antibiotics using the netrank function which yielded P scores. Frequentist network meta-analysis was used to assess the efficacy of all outcomes. RESULTS: We included 13 RCTs with a total number of 3856 patients that showed Fosfomycin ranked the highest among the other antibiotics with respect to clinical cure (P-score = 0.99) and microbiological cure (P-score = 0.99) while Ciprofloxacin ranked the lowest (P-score = 0.11 and 0.02, respectively). Moreover, Ciprofloxacin yielded the highest relapse rate (P-score = 1), whereas TMP-SMX had the lowest relapse rate (P-score = 0.07). As for the adverse events, Ciprofloxacin demonstrated the highest adverse events as opposed to Fosfomycin (P-score = 0.98 and 0.05, respectively). CONCLUSION: The network meta-analysis demonstrated that Fosfomycin is the most effective antibiotic in treating uncomplicated UTIs with respect to clinical cure, microbiological cure, and adverse events profile.


Subject(s)
Fosfomycin , Urinary Tract Infections , Humans , Anti-Bacterial Agents/therapeutic use , Fosfomycin/therapeutic use , Nitrofurantoin , Trimethoprim, Sulfamethoxazole Drug Combination , Network Meta-Analysis , Urinary Tract Infections/drug therapy , Ciprofloxacin/therapeutic use , Recurrence
7.
Fish Shellfish Immunol ; 151: 109713, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914180

ABSTRACT

As an environmentally friendly alternative to antibiotics, bee venom holds promise for aquaculture due to its diverse health advantages, including immune-amplifying and anti-inflammatory features. This study investigated the effects of dietary bee venom (BV) on the growth and physiological performance of Thinlip mullet (Liza ramada) with an initial body weight of 40.04 ± 0.11 g for 60 days. Fish were distributed to five dietary treatments (0, 2, 4, 6, and 8 mg BV/kg diet) with three replicates. Growth traits, gut enzyme ability (lipase, protease, amylase), intestinal and liver histology, blood biochemistry, immune responses [lysozyme activity (LYZ), bactericidal activity (BA), nitroblue tetrazolium (NBT%)], and antioxidant status [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA)] were evaluated. BV supplementation significantly improved growth performance, digestive enzyme activity, histological integrity of organs, immune responses (LYZ, BA), and antioxidant status (SOD, CAT, GPx), while declining MDA levels. Optimal BV levels were identified between 4.2 and 5.8 mg/kg diet for different parameters. Overall, the findings suggest that BV supplementation can enhance growth and physiological performance in Thinlip mullet, highlighting its potential as a beneficial dietary supplement for fish health and aquaculture management.


Subject(s)
Animal Feed , Aquaculture , Bee Venoms , Diet , Dietary Supplements , Smegmamorpha , Animals , Bee Venoms/pharmacology , Bee Venoms/administration & dosage , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Smegmamorpha/immunology , Immunity, Innate/drug effects , Dose-Response Relationship, Drug , Random Allocation
8.
Clin Chem Lab Med ; 62(1): 199-206, 2024 01 26.
Article in English | MEDLINE | ID: mdl-37529863

ABSTRACT

OBJECTIVES: Several studies have demonstrated that synovial calprotectin is a highly accurate biomarker in diagnosing periprosthetic joint infections (PJI). Assuring reliability is of great importance and coincides with adequate preanalytical handling. This study focuses on potentially interfering factors. METHODS: To assess the stability of synovial calprotectin, the effect of time, storage temperature, EDTA, freeze-thaw cycles, viscosity, and blood and lipid contamination was investigated. In the blood and lipid contamination experiments, hemolyzed and non-hemolyzed blood, homogenized adipose tissue, intralipid and chylomicrons were added. The effect of viscosity was investigated using freeze-thaw cycles, enzymatic pretreatment and sonification. RESULTS: No effect on synovial calprotectin levels was observed in synovial samples kept at room temperature compared to samples kept at 4 °C for up to seven days of storage. Freeze-thaw cycles did not result in significantly different calprotectin levels, although samples without EDTA resulted in higher recoveries after 1 and 2 freeze-thaw cycles. Blood and lipid contamination did not interfere with accurate synovial calprotectin analysis. Sample pretreatment to reduce sample viscosity by pretreating samples with DNAse and/or hyaluronidase did not influence calprotectin analysis. Sonification, however, resulted in increased calprotectin values. CONCLUSIONS: Synovial calprotectin is a stable biomarker and its analysis is not easily influenced by potential interfering factors.


Subject(s)
Leukocyte L1 Antigen Complex , Lipids , Humans , Leukocyte L1 Antigen Complex/analysis , Edetic Acid , Reproducibility of Results , Biomarkers/analysis
9.
Pediatr Transplant ; 28(1): e14692, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38317341

ABSTRACT

BACKGROUND: Extended family donor search other than siblings may yield an HLA matched donor in communities with high rate of consanguinity. The outcome of patients who are transplanted from non-sibling matched related donors (NS-MRD) including engraftment and graft versus host disease (GVHD) are scarce in comparison with matched sibling donor (MSD). METHODS: We retrospectively reviewed the outcome of all our pediatric hematopoietic stem cell transplantation (HSCT) patients who had non-sibling matched related donor and controlled them with matched sibling donor HSCT (based on age, indication of HSCT, conditioning regimen, GVHD prophylaxis, serotherapy, stem cell source and cytomegalovirus status). RESULTS: A total of 76 patients were reviewed during study period. Thirty patients (39.5%) in NS-MRD arm and 46 patients in MSD (60.5%) were identified after matching in age, disease, and conditioning regimens. All patients had similar approach including stem cell source and GVHD prophylaxis (CNI + 2nd agent). Out of the NS-MRD group, 18 patients (59%) had one of their parents as a donor and the rest as second degree relatives. Both groups were equally distributed and were homogeneous. Both groups had no statistically significant difference in outcome including engraftment, GVHD and Chimerism tests results. GVHD was seen in (13%) NS-MRD patients compared to (11%) in MSD patients. All patients remain alive with median follow up of 1249 days (431-3525). CONCLUSIONS: This study showed no significant difference in allogenic HSCT outcomes between matched sibling donors and non-sibling matched related donors and support using the same management approach in terms of conditioning therapy, GVHD prophylaxis, and serotherapy only if indicated.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Child , Retrospective Studies , Transplantation, Homologous/methods , Tissue Donors , Siblings , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects
10.
Environ Res ; 258: 119486, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38925464

ABSTRACT

This present study enlightens the eco-friendly green synthesis of ZSM-5 from natural clay montmorillonite, and its proper incorporation with 'Ni'. Nickle (Ni) was wet impregnated onto HZSM-5 and the resulting catalyst was characterized by various techniques including XRD, BET, N2 Sorption Studies, TPD, SEM and TEM techniques. The SEM images revealed the uniform distribution of Ni over HZSM-5 zeolite catalyst and the XRD results indicated the undistorted crystalline structure of HZSM-5 even after impregnation of Ni. The latter part of the work concentrates on the strength of the catalyst in cracking oil derived from discarded fish parts. Discarded fish waste was pyrolyzed to obtain the fish oil, which was then used for cracking studies. The fish oil was efficiently converted (99% conversion) by Ni/ZSM5 (50 wt %) and yielded 70% liquid fractions, which formed gasoline (78.6%), kerosene (12.3%) and diesel (9.1%). The research is a complete parcel to examine the working potential of the produced biofuel in pre-existing engines. The quality of gasoline fraction was tested according to ASTM standards, which showed that the heating value was slightly lower compared to fossil gasoline. The torque and brake fuel consumption were also examined and it indicated that the fish oil derived gasoline fuel may need to be mixed with the commercial gasoline to optimize its performance.


Subject(s)
Biofuels , Fish Oils , Pyrolysis , Zeolites , Biofuels/analysis , Zeolites/chemistry , Catalysis , Fish Oils/chemistry , Nickel/chemistry , Nickel/analysis , Animals
11.
Environ Res ; 258: 119449, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901814

ABSTRACT

In the current study, Coccinia grandis fruit extract was used to synthesize calcium oxide nanoparticles (CaO NPs) in an economical and environmentally friendly manner. UV-Vis spectroscopy and Fourier transform infrared spectroscopy revealed that the phytoconstituents found in Coccinia grandis fruit extract facilitated the production of CaO NPs by acting as better stabilizing, biodegradable, and reducing agents. The synthesized CG-CaO NPs were also tested for photocatalytic activity in the breakdown of selective dyes such as methyl red, methyl orange, and methylene blue in the presence of sunlight. The degradation percentage was determined by analyzing the color removal rates for all dye components. After 6 h of reaction, the IC50 values for methyl red, methyl orange, as well as methylene blue dyes were 73, 107, and 133, respectively. The CG-CaO NPs were further evaluated for their antimicrobial activity against specific bacteria and fungi using the agar-well diffusion method. 200 µg/mL CG-CaO NPs inhibited Aspergillus niger, Escherichia coli, Salmonella typhi, Streptococcus mutans, and Staphylococcus aureus at zones of 13, 14, 16, 14, and 15 mM, respectively. Further checkerboard assay confirmed the antagonism effect with gentamicin. Also, Artemia salina toxicity assay showed that the LD50 value of CaO NPs was 400 µg/mL of CaO NPs. The findings confirm that Coccinia grandis-mediated CG-CaO NPs can be used effectively in antimicrobial and environmental settings.


Subject(s)
Calcium Compounds , Coloring Agents , Cucurbitaceae , Nanoparticles , Oxides , Plant Extracts , Oxides/chemistry , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Nanoparticles/chemistry , Cucurbitaceae/chemistry , Coloring Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Azo Compounds/chemistry , Animals , Artemia/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Catalysis , Fruit/chemistry , Bacteria/drug effects
12.
Environ Res ; 258: 119407, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38897435

ABSTRACT

The aim of the work is to find the efficiency of solar power in biodiesel preparation from mackerel fish. The paper also focusses on the ability of MgO/graphene prepared by one-pot synthesis using combustion methodology. The physicochemical properties of the material were analysed by XRD, N2 sorption studies, BET sorption analysis and SEM. The adsorption studies revealed the porosity of the graphene is intact, and the morphology studies indicated that MgO is uniformly distributed on the graphene surface. The highest biodiesel yield of 98.95% was obtained using the solar-powered Fresnel solar concentrator at 12.30 p.m in 6 min reaction time using 3 wt% MgO/GO catalyst at 65 °C. Conventional heating produced only 75% biodiesel at the same reaction condition, consuming25 min to complete. The solar assisted biodiesel had better HHV of 37.81 MJ/Kg, viscosity of 4.3 mm2/s, pour point of -15 °C, and a density of 0.875 g/mL. The optimized catalyst showed a shelf life of 5 cycles. The results portray the efficacy of natural energy source in alternative liquid fuel production.


Subject(s)
Biofuels , Graphite , Magnesium Oxide , Biofuels/analysis , Graphite/chemistry , Magnesium Oxide/chemistry , Catalysis , Animals , Solar Energy
13.
Mol Divers ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656598

ABSTRACT

New quinazolin-4-ones 9-32 were synthesized in an attempt to overcome the life-threatening antibiotic resistance phenomenon. The antimicrobial screening revealed that compounds 9, 15, 16, 18, 19, 20 and 29 are the most broad spectrum antimicrobial agents in this study with safe profile on human cell lines. Additionally, compounds 19 and 20 inhibited biofilm formation in Pseudomonas aeruginosa, which is regulated by quorum sensing system, at sub-minimum inhibitory concentrations (sub-MICs) with IC50 values 3.55 and 6.86 µM, respectively. By assessing other pseudomonal virulence factors suppression, it was found that compound 20 decreased cell surface hydrophobicity compromising bacterial cells adhesion, while both compounds 19 and 20 curtailed the exopolysaccharide production which constitutes the major component of the matrix binding biofilm components together. Also, at sub-MICs Pseudomonas cells twitching motility was impeded by compounds 19 and 20, a trait which augments the cells pathogenicity and invasion potential. Molecular docking study was performed to further evaluate the binding mode of candidates 19 and 20 as inhibitors of P. aeruginosa quorum sensing transcriptional regulator PqsR. The achieved results demonstrate that both compounds bear promising potential for discovering new anti-biofilm and quorum quenching agents against Pseudomonas aeruginosa without triggering resistance mechanisms as the normal bacterial life cycle is not disturbed.

14.
Skin Res Technol ; 30(5): e13727, 2024 May.
Article in English | MEDLINE | ID: mdl-38711343

ABSTRACT

Wound healing is a complex, intricate, and dynamic process that requires effective therapeutic management. The current study evaluates the wound healing potentials of methanolic extract of Cuminum cyminum L. seeds (CCS) in rats. Sprague Dawley (24) rats were distributed into four cages, wounds produced on the back of the neck, and received two daily topical treatments for 14 days: A, rats received normal saline; B, wounded rats treated with intrasite gel; C and D, rats received 0.2 mL of 250 and 500 mg/kg of CCS, respectively. After that, wound area and closure percentage were evaluated, and wound tissues were dissected for histopathological, immunohistochemical, and biochemical examinations. Acute toxicity trials of methanolic extract of CCS showed the absence of any physiological changes or mortality in rats. CCS application caused a significant reduction in wound size and a statistically elevated percentage of wound contraction than those of vehicle rats. CCS treatment caused significant up-regulation of collagen fiber, fibroblasts, and fewer inflammatory cells (inflammation) in granulation tissues. TGF-ß1 (angiogenetic factor) was significantly more expressed in CCS-treated rats in comparison to normal saline-treated rats; therefore, more fibroblasts transformed into myofibroblasts (angiogenesis). CCS-treated rats showed remarkable antioxidant potentials (higher SOD and CAT enzymes) and decreased MDA (lipid peroxidation) levels in their wound tissue homogenates. Hydroxyproline amino acid (collagen) was significantly up-regulated by CCS treatment, which is commonly related to faster wound closure area. The outcomes suggest CCS as a viable new source of pharmaceuticals for wound treatment.


Subject(s)
Cuminum , Plant Extracts , Rats, Sprague-Dawley , Seeds , Wound Healing , Animals , Wound Healing/drug effects , Seeds/chemistry , Rats , Plant Extracts/pharmacology , Cuminum/chemistry , Male , Skin/injuries , Skin/drug effects , Skin/pathology , Transforming Growth Factor beta1/metabolism
15.
Luminescence ; 39(8): e4840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109476

ABSTRACT

The study presents Ag2CrO4/Fe2O3/CeO2 ternary nanocomposite, based on Fe2O3/CeO2 binary composites, which demonstrated excellent photocatalytic performance in the photodegradation of methylene blue under solar irradiation. The Ag2CrO4/Fe2O3/CeO2 nanocomposites was orthorhombic, ilmenite, and cubic-fluorite phases of Ag2CrO4, Fe2O3, and CeO2, respectively, according to the XRD examination. A strong bond between Ag2CrO4, Fe2O3, and CeO2 within the nanocomposite was demonstrated by the SEM and TEM investigations. Moreover, it was discovered that the coupling of Ag2CrO4 and Fe2O3 caused a red shift and moved CeO2 absorption edge from the UV to the visible spectrum. The reason behind this is that the band gap of CeO2 reduced 2.85 to 2.69 eV and the absorbance band intensity increased in visible region. Utilizing visible light, Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites exhibit enhanced photocatalytic properties (98.90%) for the degradation of methylene blue (MB) within 100 min. The long-term reliability and recyclability of the photocatalyst were explored through 3 successive cycles. An active radical quenching test was conducted to elucidate the involvement of O2 - and OH which are the primary reactive species in the photocatalytic breakdown of MB. Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites displayed notable improvements in photodegradation activity, making them well suited for the effective removal of hazardous dyes present in textile effluents.


Subject(s)
Cerium , Ferric Compounds , Methylene Blue , Nanocomposites , Photolysis , Nanocomposites/chemistry , Cerium/chemistry , Catalysis , Methylene Blue/chemistry , Ferric Compounds/chemistry , Photochemical Processes , Silver Compounds/chemistry , Silver/chemistry , Particle Size
16.
Luminescence ; 39(8): e4849, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099225

ABSTRACT

Pesticides in environmental samples pose significant risks to ecosystems and human health since they require precise and efficient detection methods. Imidacloprid (IMI), a widely used neonicotinoid insecticide, exemplifies these hazards due to its potential toxicity. This study addresses the urgent need for improved monitoring of such contaminants by introducing a novel fluorometric method for detecting IMI using nitrogen-doped graphite carbon dots (N-GCDs). The sensor operates by quenching fluorescence through the interaction of Cu2+ ions with N-GCDs. Subsequently, IMI binds to the imidazole group, chelates with Cu2+, and restores the fluorescence of N-GCDs. This alternating fluorescence behavior allows for the accurate identification of both Cu2+ and IMI. The sensor exhibits linear detection ranges of 20-100 nM for Cu2+ and 10-140 µg/L for IMI, with detection limits of 18 nM and 1.2 µg/L, respectively. The high sensitivity of this sensor enables the detection of real-world samples, which underscores its potential for practical use in environmental monitoring and agricultural safety.


Subject(s)
Copper , Environmental Monitoring , Fluorometry , Graphite , Neonicotinoids , Nitro Compounds , Nitrogen , Quantum Dots , Neonicotinoids/analysis , Neonicotinoids/chemistry , Nitro Compounds/chemistry , Nitro Compounds/analysis , Copper/chemistry , Copper/analysis , Nitrogen/chemistry , Graphite/chemistry , Quantum Dots/chemistry , Insecticides/analysis , Insecticides/chemistry , Imidazoles/chemistry
17.
J Arthroplasty ; 39(8): 1926-1931.e1, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38428694

ABSTRACT

BACKGROUND: Synovial calprotectin is a promising biomarker for diagnosing chronic periprosthetic joint infections (PJIs), but its diagnostic value has not been directly compared to synovial leukocyte count and polymorphonuclear neutrophils. This study aimed to: (1) evaluate and compare the diagnostic accuracy between these markers in patients undergoing revision arthroplasty for chronic PJI or aseptic reasons; and (2) determine the best rule-out and rule-in test for PJI. METHODS: Synovial fluid samples from patients undergoing revision arthroplasty in hip and knee joints were collected and analyzed. Patients diagnosed with an acute PJI, patients treated with antibiotics 2 weeks prior to revision surgery, and/or patients who had active inflammatory joint disease were excluded. Periprosthetic joint infections were diagnosed based on the presence of a sinus tract and/or positive intraoperative cultures according to the European Bone and Joint Infection Society microbiological criteria. RESULTS: A total of 137 patients were included, of whom 19 (14%) were diagnosed with a PJI. Overall, synovial calprotectin had the highest diagnostic accuracy of all studied markers (area under the curve 96%). Synovial calprotectin, with a cutoff of 50 mg/L, had the highest negative predictive value of 100%. However, PMNs (> 80%) combined with a leukocyte count (> 3,000 cells/µL) showed the highest positive likelihood ratio of an infection (PLR 17). CONCLUSIONS: Synovial calprotectin is the most accurate biomarker for ruling out a chronic PJI, while the combination of synovial leukocyte count and PMN is most reliable for ruling in a chronic PJI.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Biomarkers , Leukocyte L1 Antigen Complex , Prosthesis-Related Infections , Synovial Fluid , Humans , Prosthesis-Related Infections/diagnosis , Retrospective Studies , Female , Male , Leukocyte Count , Synovial Fluid/chemistry , Aged , Leukocyte L1 Antigen Complex/analysis , Middle Aged , Biomarkers/analysis , Biomarkers/metabolism , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Knee/adverse effects , Reoperation , Aged, 80 and over , Chronic Disease
18.
J Environ Manage ; 353: 120283, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38330842

ABSTRACT

The recovery of rare earth elements (REEs) including neodymium (Nd) and dysprosium (Dy) from NdFeB permanent magnets has become one of the main ways to solve the increased demand for rare earth. Herein, n-dodecyl phosphate (DPPA) was used for the first time as the adsorption functional group donor, sodium alginate as the substrate, and calcium chloride solution as the reactive solvent, a hybrid hydrogel adsorbent DPPA/CaALG was synthesized by sol-gel method for application in the adsorption and separation of Nd and Dy from the Co-Nd-Dy ternary system. SEM-EDS, and N2 adsorption-desorption analysis showed the successful preparation of DDPA/CaALG with mesoporous structure. Batch experiments showed the superiority of the hybrid hydrogel for the good selective adsorption of Nd and Dy, such as large adsorption capacity (Nd: 162.5 mg/g, Dy: 183.5 mg/g), and no adsorption for Co. FT-IR, XPS showed that PO and P-O groups are involved in the adsorption process of Nd and Dy as electron acceptors, where the ion exchange of P-OH is dominant. Furthermore, the chemical properties of ligands and complexes were analyzed by Density Functional Theory (DFT) calculations and revealed their adsorption behaviors as well as the competition between different metal ions.


Subject(s)
Metals, Rare Earth , Neodymium , Dysprosium , Hydrogels , Adsorption , Alginates , Spectroscopy, Fourier Transform Infrared , Phosphates
19.
Article in English | MEDLINE | ID: mdl-38879792

ABSTRACT

Demand for sustainable animal and aquaculture production drives the exploration of novel feed additives. We highlight octacosanol, a long-chain alcohol from plant sources, as a promising multifunctional feed additive. The review comprehensively evaluates octacosanol's applications in animal and aquaculture nutrition, including its molecular properties and mechanisms of action. It elucidates how octacosanol affects lipid metabolism, energy utilization and immune modulation. Octacosanol enhances livestock growth, efficiency, carcass quality and stress resilience. We thoroughly discuss how it enhances feed utilization, disease resistance and overall performance in finfish and shellfish in aquaculture. The review also addresses the ecological and sustainability aspects of octacosanol utilization. We identify challenges and knowledge gaps in octacosanol research, prompting suggestions for future investigations. We address regulatory considerations, dosage optimization and potential interactions with other feed additives to ensure the safe and effective use of octacosanol. In conclusion, the review highlights octacosanol's potential as a versatile feed additive in the animal and aquaculture industries and urges further research to uncover its benefits and sustainability contributions, proposing a prospective research plan for this purpose. This thorough analysis is a valuable resource for researchers, nutritionists and industry professionals looking to find innovative methods to improve production practices and advance sustainable food systems.

20.
Article in English | MEDLINE | ID: mdl-38689484

ABSTRACT

A 210-day experiment to assess the efficacy of substituting azolla plant powder at levels of 0, 20, 40, and 60% for fish meal on red tilapia fingerlings (RTF, initial weight of 18.23 ± 0.12 g) performance under salinity levels of 5, 18, and 28ppt. Among the various conditions, RTF-fed 20% azolla at 28 and 5ppt salinity showcased the highest specific growth rate (SGR), whereas the lowest SGR was observed in fish-fed 60% azolla at 5ppt salinity. Upon azolla incorporation, noteworthy elevations in phytoplankton, zooplankton, dissolved oxygen (DO), pH, NH3, and NO3 were noted and conversely, azolla introduction led to decreased NH4 and NO2 concentrations in all salinity levels. Further, a significant (p < 0.05) interaction between azolla levels and water salinity (S×A) significantly impacted the hematological parameters of RTF. The highest levels of superoxide dismutase (SOD), catalase (CAT), and total protein (TP) were found in RTF-fed 20% azolla at 28ppt salinity, while the lowest CAT and TP levels occurred in RTF-fed 60% azolla at 5ppt salinity. The highest aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were recorded in the RTF group fed 60% azolla at 5ppt salinity, with the lowest values seen in the group given 20% azolla at 28ppt salinity. RTF fed a 20% azolla diet at 18ppt salinity exhibited the highest lysozyme value, in contrast to the lowest value observed in the RTF group fed the control diet at 18ppt salinity. In conclusion, this study recommends the utilization of azolla at inclusion levels ranging from 20 to 40%, as it has the potential to notably enhance the immune system and elevate the survival rate of RTF.

SELECTION OF CITATIONS
SEARCH DETAIL