Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Arch Microbiol ; 206(4): 179, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498215

ABSTRACT

Sediments underlying marine hypoxic zones are huge sinks of unreacted complex organic matter, where despite acute O2 limitation, obligately aerobic bacteria thrive, and steady depletion of organic carbon takes place within a few meters below the seafloor. However, little knowledge exists about the sustenance and complex carbon degradation potentials of aerobic chemoorganotrophs in these sulfidic ecosystems. We isolated and characterized a number of aerobic bacterial chemoorganoheterotrophs from across a ~ 3 m sediment horizon underlying the perennial hypoxic zone of the eastern Arabian Sea. High levels of sequence correspondence between the isolates' genomes and the habitat's metagenomes and metatranscriptomes illustrated that the strains were widespread and active across the sediment cores explored. The isolates catabolized several complex organic compounds of marine and terrestrial origins in the presence of high or low, but not zero, O2. Some of them could also grow anaerobically on yeast extract or acetate by reducing nitrate and/or nitrite. Fermentation did not support growth, but enabled all the strains to maintain a fraction of their cell populations over prolonged anoxia. Under extreme oligotrophy, limited growth followed by protracted stationary phase was observed for all the isolates at low cell density, amid high or low, but not zero, O2 concentration. While population control and maintenance could be particularly useful for the strains' survival in the critically carbon-depleted layers below the explored sediment depths (core-bottom organic carbon: 0.5-1.0% w/w), metagenomic data suggested that in situ anoxia could be surmounted via potential supplies of cryptic O2 from previously reported sources such as Nitrosopumilus species.


Subject(s)
Ecosystem , Oxygen , Humans , Oxygen/metabolism , Geologic Sediments/microbiology , Carbon/metabolism , Bacteria , Hypoxia
2.
Arch Microbiol ; 204(6): 347, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35612643

ABSTRACT

Paraburkholderia bengalensis sp. nov. strain IR64_4_BI was isolated from rice roots cultivated in Madhyamgram field station of Bose Institute, West Bengal, India. IR64_4_BI is a Gram-negative, motile, nitrate-reducing, nitrogen-fixing bacterium. Whole-cell fatty acid analyses of IR64_4_BI show C16:0, summed feature 8 (comprising C18:1ω7c and/or C18:1 ω 6c) and summed feature 3(C16:1 w7c/C16:1 w6c or C16:1 ω 7c/C16:1 ω 6c) were the predominant fatty acids. 16S rRNA phylogeny showed that it was most similar to P. phymatum STM815T (98.5% identity), P. terrae KMY02T (98.44% identity) and P. hospita LMG 20598T (98.32% identity). The Average Nucleotide Identity-BLAST (ANIb) of P. bengalensis IR64_4_BI with P. hospita DSM 17164T, P. terrae DSM 17804T, P. phymatum STM815T and P. hospita LMG 20598T was 83.11, 83.52, 84.5 and 83.12% respectively. Comparison of genome sequence of IR64_4_BI with other species of Paraburkholderia using the Multi-locus species tree software show that P. bengalensis IR64_4_BI is a novel species. The ability of P. bengalensis IR64_4_BI to survive on nitrogen-free medium under microaerophilic conditions and the abundance of nitrogen metabolism-related genes makes this strain a potential candidate for developing a nitrogen-fixing system in rice. Based on genotypic, phenotypic and chemotaxonomic studies, we propose that IR64_4_BI (= MTCC 13051 = JCM 34777) is a new species of Paraburkholderia which has been assigned as Paraburkholderia bengalensis sp.nov.


Subject(s)
Burkholderiaceae , Oryza , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Nitrogen , Nucleic Acid Hybridization , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Ubiquinone
3.
Biometals ; 35(2): 215-228, 2022 04.
Article in English | MEDLINE | ID: mdl-35037170

ABSTRACT

Phylogenetically diverse bacteria tolerate high boron concentrations while others require it for metabolic purposes despite the metalloid being toxic beyond a threshold. Boron resistance and plant growth promoting attributes of two bacterial strains, Lysinibacillus sp. OL1 and a novel Enterococcus sp. OL5, isolated from boron-fertilizer-amended cauliflower fields were investigated in this study. OL1 and OL5 grew efficiently in the presence of 210-230 mM boron, and resistance was found to be inducible by small amounts of the element: 5 to 50 mM boron pre-exposure progressively shortened the lag phase of growth in the presence of 200 mM boron. Intracellular boron accumulation was also found to be regulated by the level of pre-exposure: no induction or induction by small amounts led to higher levels of intracellular accumulation, whereas induction by high concentrations led to lower accumulation. These data, in the context of the strains' overall resistance towards 200 mM boron, indicated that induction by higher boron concentrations turned potential efflux mechanisms on, while resistance was eventually achieved by continuous cellular entry and exit of the ions. Involvement of solute efflux in boron resistance was corroborated by the genome content of the isolates (genes encoding proteins of the ATP-binding cassette, major facilitator, small multidrug resistance, multi antimicrobial extrusion, and resistance-nodulation-cell division, family/superfamily). Bacteria such as OL1 and OL5, which resist boron via influx-efflux, potentially lower boron bioavailability, and therefore toxicity, for the soil microbiota at large. These bacteria, by virtue of their plant-growth-promoting attributes, can also be used as biofertilizers.


Subject(s)
Bacillaceae , Boron , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Boron/metabolism , Enterococcus/metabolism , Soil
4.
Mol Microbiol ; 109(2): 169-191, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29669166

ABSTRACT

The SoxXAYZB(CD)2 -mediated pathway of bacterial sulfur-chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock-out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate-to-tetrathionate conversion is Sox independent. Expression of two glutathione metabolism-related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate-dependent oxygen consumption pattern of whole cells, and sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3- and 10-fold during thiosulfate-to-tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock-out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S-thiosulfate to tetrathionate. Knock-out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ∼ 20 mM S-thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ-dependent thiosulfate dehydrogenation, whereas its PQQ-independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.

5.
Microbiol Resour Announc ; 11(2): e0093921, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35175118

ABSTRACT

We present the draft genome sequences of two bacterial strains that are putatively unique species and belong to two different Gram-negative genera: Serratia sp. EWG9 and Leclercia sp. EMC7, recovered from the gut and cast, respectively, of the compost worm Eisenia fetida.

6.
Microbiol Spectr ; 10(6): e0160622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36287077

ABSTRACT

High temperature growth/survival was revealed in a phylogenetic relative (SMMA_5) of the mesophilic Paracoccus isolated from the 78 to 85°C water of a Trans-Himalayan sulfur-borax spring. After 12 h at 50°C, or 45 min at 70°C, in mineral salts thiosulfate (MST) medium, SMMA_5 retained ~2% colony forming units (CFUs), whereas comparator Paracoccus had 1.5% and 0% CFU left at 50°C and 70°C, respectively. After 12 h at 50°C, the thermally conditioned sibling SMMA_5_TC exhibited an ~1.5 time increase in CFU count; after 45 min at 70°C, SMMA_5_TC had 7% of the initial CFU count. 1,000-times diluted Reasoner's 2A medium, and MST supplemented with lithium, boron, or glycine-betaine, supported higher CFU-retention/CFU-growth than MST. Furthermore, with or without lithium/boron/glycine-betaine, a higher percentage of cells always remained metabolically active, compared with what percentage formed single colonies. SMMA_5, compared with other Paracoccus, contained 335 unique genes: of these, 186 encoded hypothetical proteins, and 83 belonged to orthology groups, which again corresponded mostly to DNA replication/recombination/repair, transcription, secondary metabolism, and inorganic ion transport/metabolism. The SMMA_5 genome was relatively enriched in cell wall/membrane/envelope biogenesis, and amino acid metabolism. SMMA_5 and SMMA_5_TC mutually possessed 43 nucleotide polymorphisms, of which 18 were in protein-coding genes with 13 nonsynonymous and seven radical amino acid replacements. Such biochemical and biophysical mechanisms could be involved in thermal stress mitigation which streamline the cells' energy and resources toward system-maintenance and macromolecule-stabilization, thereby relinquishing cell-division for cell-viability. Thermal conditioning apparently helped inherit those potential metabolic states which are crucial for cell-system maintenance, while environmental solutes augmented the indigenous stability-conferring mechanisms. IMPORTANCE For a holistic understanding of microbial life's high-temperature adaptation, it is imperative to explore the biology of the phylogenetic relatives of mesophilic bacteria which get stochastically introduced to geographically and geologically diverse hot spring systems by local geodynamic forces. Here, in vitro endurance of high heat up to the extent of growth under special (habitat-inspired) conditions was discovered in a hot-spring-dwelling phylogenetic relative of the mesophilic Paracoccus species. Thermal conditioning, extreme oligotrophy, metabolic deceleration, presence of certain habitat-specific inorganic/organic solutes, and potential genomic specializations were found to be the major enablers of this conditional (acquired) thermophilicity. Feasibility of such phenomena across the taxonomic spectrum can well be paradigm changing for the established scopes of microbial adaptation to the physicochemical extremes. Applications of conditional thermophilicity in microbial process biotechnology may be far reaching and multifaceted.


Subject(s)
Hot Springs , Paracoccus , Betaine/metabolism , Hot Springs/microbiology , Phylogeny , Paracoccus/genetics , Paracoccus/metabolism , Boron , Lithium , Amino Acids , Glycine
7.
Microbiol Resour Announc ; 10(38): e0062121, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34553989

ABSTRACT

We report the draft genome sequences of four bacterial strains (all of which are putatively novel species) belonging to four different genera. The Gram-positive Bacillus sp. strain GG161 and Rhodococcus sp. strain GG48 and the Gram-negative Achromobacter sp. strain GG226 and Shigella sp. strain GCP5 were all isolated from the gut of the optionally intestine-breathing freshwater fish Lepidocephalichthys guntea.

8.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31919184

ABSTRACT

Two novel boron-tolerant, arsenic-resistant, Gram-positive bacterial strains, Lysinibacillus sp. OL1 and Enterococcus sp. OL5, were isolated from boron fertilizer-amended cauliflower plantation field soils in India. Here, we report the draft genome sequences of OL1 (4.87 Mb) and OL5 (3.93 Mb) to explore the intricacies of boron tolerance in bacteria.

9.
Microbiol Res ; 230: 126345, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31585234

ABSTRACT

Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy involves direct oxidation of thiosulfate (S2O32-) to sulfate (SO42-) without any free intermediate. This pathway mediated by SoxXAYZBCD is apparently the exclusive mechanism of thiosulfate oxidation in facultatively chemolithotrophic alphaproteobacteria. Here we explore the molecular mechanisms of sulfur oxidation in the thiosulfate- and tetrathionate(S4O62-)-oxidizing alphaproteobacterium Paracoccus thiocyanatus SST, and compare them with the prototypical Sox process of Paracoccus pantotrophus. Our results reveal a unique case where an alphaproteobacterium has Sox as its secondary pathway of thiosulfate oxidation converting ∼10% of the thiosulfate supplied, whilst ∼90% of the substrate is oxidized via a pathway that produces tetrathionate as an intermediate. Sulfur oxidation kinetics of a deletion mutant showed that thiosulfate-to-tetrathionate conversion, in SST, is catalyzed by a thiosulfate dehydrogenase (TsdA) homolog that has far-higher substrate-affinity than the Sox system of this bacterium, which in turn is also less efficient than the P. pantotrophus Sox. Deletion of soxB abolished sulfate-formation from thiosulfate/tetrathionate, while thiosulfate-to-tetrathionate conversion remained unperturbed. Physiological studies revealed the involvement of glutathione in SST tetrathionate oxidation. However, zero impact of the insertional mutation of a thiol dehydrotransferase (thdT) homolog, together with the absence of sulfite as an intermediate, indicated that SST tetrathionate oxidation is mechanistically novel, and distinct from its betaproteobacterial counterpart mediated by glutathione, ThdT, SoxBCD and sulfite:acceptor oxidoreductase. The present findings highlight extensive functional diversification of sulfur-oxidizing enzymes across phylogenetically close, as well as distant, bacteria.


Subject(s)
Paracoccus/metabolism , Thiosulfates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemoautotrophic Growth , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Paracoccus/genetics , Sulfur/metabolism
10.
FEMS Microbiol Lett ; 367(19)2020 10 16.
Article in English | MEDLINE | ID: mdl-32975580

ABSTRACT

The ecology of aerobic microorganisms is never explored in marine oxygen minimum zone (OMZ) sediments. Here we reveal aerobic bacterial communities along ∼3 m sediment-horizons of the eastern Arabian Sea OMZ. Sulfide-containing sediment-cores retrieved from 530 mbsl (meters beneath the sea-level) and 580 mbsl were explored at 15-30 cm intervals, using metagenomics, pure-culture-isolation, genomics and metatranscriptomics. Genes for aerobic respiration, and oxidation of methane/ammonia/alcohols/thiosulfate/sulfite/organosulfur-compounds, were detected in the metagenomes from all 25 sediment-samples explored. Most probable numbers for aerobic chemolithoautotrophs and chemoorganoheterotrophs at individual sample-sites were up to 1.1 × 107 (g sediment)-1. The sediment-sample collected from 275 cmbsf (centimeters beneath the seafloor) of the 530-mbsl-core yielded many such obligately aerobic isolates belonging to Cereibacter, Guyparkeria, Halomonas, Methylophaga, Pseudomonas and Sulfitobacter which died upon anaerobic incubation, despite being provided with all possible electron acceptors and fermentative substrates. High percentages of metatranscriptomic reads from the 275 cmbsf sediment-sample, and metagenomic reads from all 25 sediment-samples, matched the isolates' genomic sequences including those for aerobic metabolisms, genetic/environmental information processing and cell division, thereby illustrating the bacteria's in-situ activity, and ubiquity across the sediment-horizons, respectively. The findings hold critical implications for organic carbon sequestration/remineralization, and inorganic compounds oxidation, within the sediment realm of global marine OMZs.


Subject(s)
Aquatic Organisms/metabolism , Bacteria/metabolism , Geologic Sediments/microbiology , Microbiota/physiology , Oxygen/metabolism , Aerobiosis , Bacteria/classification , Oceans and Seas
11.
Sci Rep ; 10(1): 5917, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246033

ABSTRACT

Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga's geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga's microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga's geomicrobiology highlights the possibility that the system's kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.


Subject(s)
Extremophiles/genetics , Geologic Sediments/microbiology , Hot Springs/microbiology , Microbiota/genetics , Minerals/chemistry , Extremophiles/isolation & purification , Geologic Sediments/chemistry , Hot Temperature , Phylogeny
12.
Sci Rep ; 7: 46412, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28401944

ABSTRACT

Lignin, one of the most abundant renewable feedstock, is used to develop a biocompatible hydrogel as anti-infective ointment. A hydrophilic polyoxazoline chain is grafted through ring opening polymerization, possess homogeneous spherical nanoparticles of 10-15 nm. The copolymer was covalently modified with triazole moiety to fortify the antimicrobial and antibiofilm activities. The hydrogel was capable of down regulating the expression level of IL-1ß in LPS induced macrophage cells, and to cause significant reduction of iNOS production. It supported cellular anti-inflammatory activity which was confirmed with luciferase assay, western blot, and NF-κB analysis. This novel lignin-based hydrogel tested in-vivo has shown the abilities to prevent infection of burn wound, aid healing, and an anti-inflammatory dressing material. The hydrogel reported here provides a new material platform to introduce a cost-effective and efficient ointment option after undertaking further work to look at its use in the area of clinical practice.


Subject(s)
Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Ointments/therapeutic use , Triazoles/therapeutic use , Wound Healing/drug effects , Animals , Anti-Infective Agents/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Cell Survival/drug effects , Inflammation/metabolism , Interleukin-1beta/metabolism , Lignin/administration & dosage , Lignin/therapeutic use , Macrophages/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , Ointments/administration & dosage , Rats , Rats, Sprague-Dawley , Triazoles/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL