ABSTRACT
Economically important species of wireworms (Coleoptera: Elateridae) were successfully associated with adults using cytochrome oxidase I (COI) barcoding, proving the usefulness of this technique to associate life stages in taxonomically difficult pest groups. Previously unrecognized and morphologically difficult, even indistinguishable, pest larvae were shown to be identifiable using this technique. This is a critical step toward discovering effective species-based integrated pest management strategies for this resurgent pest group following the loss of Lindane seed treatments. Three new adult-larval associations were discovered for Hadromorphus callidus (Brown), Hemicrepidius carbonatus (LeConte) and Metanomus insidiosus (LeConte). Hypnoidus bicolor (Eschscholtz) was shown to comprise multiple divergent lineages at a level usually considered different species, indicating that the population structure of some pest species requires more investigation. The status of the prairie grain wireworm, Selatosomus destructor (Brown), as a full species or as a subspecies of Selatosomus aeripennis (Kirby) is called into question.
Subject(s)
Coleoptera/genetics , DNA Barcoding, Taxonomic , Animals , Coleoptera/classification , Insect Control , LarvaABSTRACT
The palm leafhopper, Haplaxius crudus, is a possible vector of the pathogen that causes the Lethal Wilt of oil palms in Colombia. This disease represents the biggest phytosanitary problem in the eastern palm zone. From 2010 to 2021, more than 7700 ha have been eradicated, with economic losses exceeding 154 million USD. Therefore, knowing the biology of this insect and its population parameters is necessary for developing population control tools. To evaluate these parameters, a cohort of 100 eggs obtained from H. crudus adults from the breeding unit established in the Campo Experimental Palmar de las Corocoras de Cenipalma in Paratebueno, Cundinamarca, was monitored to record the life cycle and the population parameters using a life table under semi-controlled conditions in an oil palm plantation. The life cycle from egg to adult was 62.7 ± 15.5 days (26.1 ± 2.9 °C; HR: 89.8 ± 14.0%). The egg stage lasted 14.6 ± 0.6 days, the nymphal stage 48.1 ± 2.8 days through five instars, and the adult longevity was 14.8 ± 8.4 days. The specific mortality rate (qx) calculated in the life table was 0.14 (for the egg stage), 0.05 (for I instar), 0.05 (for II instar), 0.03 (for III instar), 0.04 (for IV instar), and 0.07 (for V instar). The population parameters' values were as follows: net reproductive rate Ro = 10.96; generation time T = 62.3 days, intrinsic natural growth rate rm = 0.03, and finite growth rate λ = 1.03. These results help us to understand the population dynamics of this insect in the field and for the development of population control studies.
ABSTRACT
Basal Stem Rot (BSR), caused by Ganoderma spp., is one of the most important emerging diseases of oil palm in Colombia and is so far restricted to only two producing areas in the country. However, despite the controls established to prevent its spread to new areas, containment has not been possible. This study aimed to understand BSR's propagation mechanisms and related environmental conditions by measuring Ganoderma basidiospores' concentrations at various heights using four 7-day Burkard volumetric samplers in a heavily affected plantation. Meteorological data, including solar radiation, temperature, humidity, precipitation, and wind speed, were also recorded. Analysis revealed higher basidiospore concentrations below 4 m, peaking at 02:00 h, with increased levels towards the study's end. Spore concentrations were not directly influenced by temperature, humidity, or precipitation, but showed higher releases during drier periods. A significant correlation was found between wind speed and spore concentration, particularly below 1.5 m/s, though higher speeds might aid long-distance pathogen spread. This study highlights the complexity of BSR propagation and the need for continued monitoring and research to manage its impact on Colombia's oil palm industry.
ABSTRACT
In Colombia, plantings with the oil palm hybrid between Elaeis oleifera × Elaeis guineensis, known as O × G hybrid, have increased due to its tolerance to bud rot. Despite this, different degrees of foliar necrosis, chlorosis, and leaf blight have been reported in some cultivars; therefore, this work aimed to diagnose this problem. We visited plantation plots with palms exhibiting the mentioned symptoms and collected 21 samples of affected tissues in different disease states. The affected tissues were examined and seeded in a culture medium. Pathogenicity tests were performed and the isolates were characterized by culture and morphological and molecular features. Curvularia, Colletotrichum, Phoma, and 25 Pestalotiopsis-like fungi were isolated from the foliar lesions. In the pathogenicity tests, the symptoms observed in the field were reproduced with MFTU01-1, MFTU12, and MFTU21 isolates, which were identified at the species level through a sequence analysis of three genes (ITS, TUB2, and TEF1-α) as Pestalotiopsis arengae with an identical level of 99% based on the results of BLAST and phylogenetic tree analyses. The remaining 22 Pestalotiopsis-like non-pathogenic isolates were identified as species of Neopestalotiopsis and Pseudopestalotiopsis. The direct association of P. arengae with the disease was confirmed via molecular detection in affected tissues in 15 of 21 samples collected for this evaluation. This is the first report of P. arengae as the causal agent of foliar lesions in O × G hybrid oil palm in Colombia.
ABSTRACT
Durrantia arcanella is a recurring pest insect of oil palm in Colombia. Because the biology and ecology of D. arcanella are unknown, it was proposed to determine the life cycle and foliar consumption under laboratory conditions. Furthermore, through sequential sampling for two and a half years, its population fluctuation and natural enemies were determined in Agustín Codazzi and El Copey (Cesar, Colombia). Also, temperature, precipitation, and relative humidity were registered. The life cycle of D. arcanella lasted 48.0 ± 10.1 days, the egg 8.0 ± 0.7 days, larva 24.2 ± 6.2 days, pre-pupa 1.5 ± 0.5 days, pupa 7.1 ± 0.9 days, and adult 7.2 ± 2.0 days. The larvae consumed 8.2 ± 5.3 cm2 of leaflets. Correlations were found between the population fluctuation in D. arcanella and the temperature in El Copey (ρ = -0.45; p < 0.0043), relative humidity in Codazzi (ρ = 0.33; p < 0.034), and with the natural control in both locations ((ρ = 0, 61; p < 0.000044) and (ρ = 0.42; p < 0.006)). These results suggest monitoring the pest populations in the second semester of the year and show the importance of promoting native natural enemies.
ABSTRACT
Phyllophaga lissopyge (Bates) (Coleoptera: Scarabaeidae: Melolonthinae) is reported for the first time from South America. Male sex pheromone response is described for P. lissopyge and two other co-occurring Phyllophaga species. Adults of P. lissopyge and P. menetriesi (Blanchard) flew to traps baited with methyl 2-(methylthio) benzoate whereas adults of P. obsoleta (Blanchard) flew irregularly to four different pheromone compounds. Adult seasonal activity is described from males captures in Rionegro, Antioquia, Colombia.
Subject(s)
Coleoptera/physiology , Animals , Behavior, Animal , Benzoates/metabolism , Coleoptera/drug effects , Colombia , Male , Seasons , Sex Attractants/metabolism , Sexual Behavior, Animal , Species SpecificityABSTRACT
The basic principles of a reliable integrated pest management program include pest identification, monitoring, and distribution. Selecting the appropriate sampling protocol to monitor wireworm for research or applied entomology depends on the objective, including simply detecting the presence or absence of wireworm, surveying the composition of wireworm assemblages, or estimating spatial and temporal population densities. In this study, the efficacy of pitfall, stocking, pot, and canister traps baited with wheat and barley mixtures was evaluated for monitoring wireworm populations in four commercial cereal fields in Montana. Pitfall and stocking traps collected greater numbers of wireworm (1625 and 1575, respectively) followed by pot-type and canister-type traps (1173 and 725, respectively). The 5098 wireworm collected from four sites included seven species: Aeolus mellillus, Agriotes sp, Dalopius sp, Hypnoidus bicolor, Limonius californicus, Limonius infuscatus, and S. aeripennis.
ABSTRACT
BACKGROUND: Wireworms, the larval stage of click beetles (family Elateridae), are significant soil pests of wheat and barley crops in the Pacific Northwest. At present, few pest management alternatives exist. For several decades, wireworms were effectively controlled by first-generation insecticides applied to the soil or as seed treatments. Currently used neonicotinoid insecticides protect crop seeds and germinating seedlings by temporary toxicity but limited mortality. As a result, field populations may increase, reaching levels too high for crop protection. In this study an investigation was made of the combination of two insecticides to achieve crop protection as well as insect mortality in wheat fields. RESULTS: Laboratory bioassays using wheat seed treated with fipronil at 1.0 and 5.0 g AI 100 kg(-1) seed resulted in 72-90% mortality of two wireworm species, Limonius californicus and Hypnoidus bicolor. At a rate of 39 g AI 100 kg(-1) seed, 8 times higher than the high rate of fipronil, thiamethoxam caused only 10-31% larval mortality in the bioassays, but did protect developing wheat stands from damage in field trials. Field plots planted with wheat seed treated with both fipronil (5.0 g AI 100 kg(-1) seed) and thiamethoxam (39.0 g AI 100 kg(-1) seed) had 83% fewer wireworms the following year compared with untreated check plots. No reduction in population was observed in plots treated with 39.0 g of thiamethoxam alone. CONCLUSIONS: Fipronil and thiamethoxam can be combined as a seed treatment to protect wheat crops from wireworm damage and reduce larval populations in the field.
Subject(s)
Coleoptera , Insect Control , Insecticides , Nitro Compounds , Oxazines , Pyrazoles , Thiazoles , Animals , Coleoptera/growth & development , Larva , Neonicotinoids , Random Allocation , Seeds , Species Specificity , Thiamethoxam , TriticumABSTRACT
BACKGROUND: White grubs are the most widespread and damaging pests in turfgrass habitats of the northeast USA, and their management is highly dependent on chemical pesticides. Because this complex includes at least eight species, opportunities for pest management would be enhanced by understanding how susceptibility to control products varies across taxa. The objective of this laboratory study was to measure variation in the susceptibility of four species to 18 biological, biorational and chemical insecticides used as curative controls. RESULTS: Across species, the most efficacious biological and chemical insecticide alternatives were Steinernema scarabaei and chlorpyrifos respectively. For biorational and chemical insecticides, the European chafer [Amphimallon majale (Razoumowsky)] was the least susceptible species. For biologicals, the Japanese beetle (Popillia japonica Newman) was the least susceptible. Considering all control products, the oriental beetle [Anomala orientalis (Waterhouse)] was the most susceptible. CONCLUSION: The magnitude of variation in susceptibility supports the idea that a single product will not reliably suppress populations of all taxa, and highlights the need for pest management practitioners to identify white grub species before intervention. This differential susceptibility could have broader consequences for grub management if a numerically dominant target species is more completely suppressed than a co-occurring species.