Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Biol Pharm Bull ; 44(10): 1419-1426, 2021.
Article in English | MEDLINE | ID: mdl-34602551

ABSTRACT

Sphingolipids (SLs), such as ceramide, glucosylceramide (GlcCer), and sphingomyelin, play important roles in the normal development/functions of the brain and peripheral tissues. Disruption of SL homeostasis in cells/organelles, specifically up-regulation of ceramide, is involved in multiple diseases including Alzheimer's disease (AD). One of the pathological features of AD is aggregates of amyloid beta (Aß) peptides, and SLs regulate both the formation/aggregation of Aß and Aß-induced cellular responses. Up-regulation of ceramide levels via de novo and salvage synthesis pathways is reported in Aß-treated cells and brains with AD; however, the effects of Aß on ceramide decomposition pathways have not been elucidated. Thus, we investigated the effects of the 25-35-amino acid Aß peptide (Aß25-35), the fundamental cytotoxic domain of Aß, on SL metabolism in cells treated with the fluorescent nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide). Aß25-35 treatment reduced the formation of NBD-GlcCer mediated by GlcCer synthase (GCS) without affecting the formation of NBD-sphingomyelin or NBD-ceramide-1-phosphate, and reduced cell viability. Aß25-35-induced responses decreased in cells treated with D609, a putative inhibitor of sphingomyelin synthases. Aß25-35-induced cytotoxicity significantly increased in GCS-knockout cells and pharmacological inhibition of GCS alone demonstrated cytotoxicity. Our study revealed that Aß25-35-induced cytotoxicity is at least partially mediated by the inhibition of GCS activity.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Glucosyltransferases/antagonists & inhibitors , Norbornanes/pharmacology , Peptide Fragments/metabolism , Thiocarbamates/pharmacology , Alzheimer Disease/pathology , Cell Line , Glucosyltransferases/metabolism , Humans , Norbornanes/therapeutic use , Thiocarbamates/therapeutic use , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)/metabolism
2.
Article in English | MEDLINE | ID: mdl-32980536

ABSTRACT

Sphingolipids represent a family of cellular lipid-molecules that regulate physiological and pathophysiological processes. Glucosylceramide (GlcCer), the simplest glycosphingolipid (GSL), is synthesized from ceramide and UDP-glucose by GlcCer synthase (GCS). Both GlcCer (and resulting GSLs) and ceramide regulate various cellular functions including cell death and multiple drug resistance. Src family tyrosine kinases are up-regulated in various human cancer cells. We examined the effect of v-Src expression on GCS activity, the formation of 4-nitrobenzo-2-oxa-1,3-diazole (NBD)-labeled GlcCer from NBD-ceramide, and the effect of tyrosine132 mutation in GCS on ceramide-induced cytotoxicity in HeLa cells. Expression of v-Src increased the formation of NBD-GlcCer in both intact cells without marked changes in other sphingolipid metabolites and cell homogenates without changing affinities of NBD-ceramide and UDP-glucose. Expression of v-Src also increased tyrosine-phosphorylated levels in GCS proteins in HeLa and HEK293T cells. In HEK293T cells transiently expressing the GCS mutant, GCS-Y132F-HA, showing replacement of the tyrosine132 residue with phenylalanine, tyrosine-phosphorylated levels in GCS proteins were significantly lower than those in control cells expressing the GCS-wild-type-HA. The formation of NBD-GlcCer in HeLa cells stably expressing GCS-Y132F-HA was significantly lower than that in the control. Ceramide-induced cytotoxicity in HeLa-GCS-Y132F-HA cells was significantly greater than in the control. In this study, we showed for the first time that expression of v-Src up-regulated GCS activity via tyrosine phosphorylation of the enzyme in a post-translational manner. Mechanisms of Src-induced resistance to ceramide-induced cytotoxicity are discussed in relation to the Src-induced up-regulation of GCS activity.


Subject(s)
Glucosylceramides/pharmacology , Glucosyltransferases/genetics , Oncogene Protein pp60(v-src)/genetics , Phenylalanine/metabolism , Tyrosine/metabolism , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/metabolism , Cell Survival/drug effects , Ceramides/metabolism , Enzyme Activation/drug effects , Glucosyltransferases/metabolism , HEK293 Cells , HeLa Cells , Humans , Mutation , Oncogene Protein pp60(v-src)/metabolism , Phenylalanine/genetics , Phosphorylation/drug effects , Tyrosine/genetics , Uridine Diphosphate Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL