Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cell ; 177(4): 970-985.e20, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031000

ABSTRACT

Prolonged behavioral challenges can cause animals to switch from active to passive coping strategies to manage effort-expenditure during stress; such normally adaptive behavioral state transitions can become maladaptive in psychiatric disorders such as depression. The underlying neuronal dynamics and brainwide interactions important for passive coping have remained unclear. Here, we develop a paradigm to study these behavioral state transitions at cellular-resolution across the entire vertebrate brain. Using brainwide imaging in zebrafish, we observed that the transition to passive coping is manifested by progressive activation of neurons in the ventral (lateral) habenula. Activation of these ventral-habenula neurons suppressed downstream neurons in the serotonergic raphe nucleus and caused behavioral passivity, whereas inhibition of these neurons prevented passivity. Data-driven recurrent neural network modeling pointed to altered intra-habenula interactions as a contributory mechanism. These results demonstrate ongoing encoding of experience features in the habenula, which guides recruitment of downstream networks and imposes a passive coping behavioral strategy.


Subject(s)
Adaptation, Psychological/physiology , Habenula/physiology , Animals , Behavior, Animal/physiology , Brain/metabolism , Habenula/metabolism , Larva , Neural Pathways/metabolism , Neurons/metabolism , Raphe Nuclei/metabolism , Serotonergic Neurons/metabolism , Serotonin , Stress, Physiological/physiology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
2.
Nature ; 571(7764): 198-204, 2019 07.
Article in English | MEDLINE | ID: mdl-31292557

ABSTRACT

Slow-wave sleep and rapid eye movement (or paradoxical) sleep have been found in mammals, birds and lizards, but it is unclear whether these neuronal signatures are found in non-amniotic vertebrates. Here we develop non-invasive fluorescence-based polysomnography for zebrafish, and show-using unbiased, brain-wide activity recording coupled with assessment of eye movement, muscle dynamics and heart rate-that there are at least two major sleep signatures in zebrafish. These signatures, which we term slow bursting sleep and propagating wave sleep, share commonalities with those of slow-wave sleep and paradoxical or rapid eye movement sleep, respectively. Further, we find that melanin-concentrating hormone signalling (which is involved in mammalian sleep) also regulates propagating wave sleep signatures and the overall amount of sleep in zebrafish, probably via activation of ependymal cells. These observations suggest that common neural signatures of sleep may have emerged in the vertebrate brain over 450 million years ago.


Subject(s)
Neurons/physiology , Sleep/physiology , Zebrafish/physiology , Animals , Biological Evolution , Brain/cytology , Brain/drug effects , Brain/physiology , Brain/physiopathology , Ependyma/cytology , Eye Movements , Fluorescence , Heart Rate , Hypnotics and Sedatives/pharmacology , Hypothalamic Hormones/metabolism , Melanins/metabolism , Neurons/drug effects , Pigmentation/physiology , Pituitary Hormones/metabolism , Polysomnography/methods , Sleep/drug effects , Sleep Deprivation/physiopathology , Sleep, REM/drug effects , Sleep, REM/physiology , Sleep, Slow-Wave/drug effects , Sleep, Slow-Wave/physiology
3.
PLoS Genet ; 16(12): e1009244, 2020 12.
Article in English | MEDLINE | ID: mdl-33301440

ABSTRACT

The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.


Subject(s)
Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Hormones/metabolism , Skin Pigmentation/genetics , Animals , Hypothalamic Hormones/genetics , Hypothalamus/cytology , Hypothalamus/metabolism , Melanins/genetics , Melanocyte-Stimulating Hormones/genetics , Melanocyte-Stimulating Hormones/metabolism , Melanocytes/metabolism , Neurons/metabolism , Pituitary Hormones/genetics , Zebrafish
4.
Nucleic Acids Res ; 46(7): 3517-3531, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29518216

ABSTRACT

Thousands of human disease-associated single nucleotide polymorphisms (SNPs) lie in the non-coding genome, but only a handful have been demonstrated to affect gene expression and human biology. We computationally identified risk-associated SNPs in deeply conserved non-exonic elements (CNEs) potentially contributing to 45 human diseases. We further demonstrated that human CNE1/rs17421627 associated with retinal vasculature defects showed transcriptional activity in the zebrafish retina, while introducing the risk-associated allele completely abolished CNE1 enhancer activity. Furthermore, deletion of CNE1 led to retinal vasculature defects and to a specific downregulation of microRNA-9, rather than MEF2C as predicted by the original genome-wide association studies. Consistent with these results, miR-9 depletion affects retinal vasculature formation, demonstrating MIR-9-2 as a critical gene underpinning the associated trait. Importantly, we validated that other CNEs act as transcriptional enhancers that can be disrupted by conserved non-coding SNPs. This study uncovers disease-associated non-coding mutations that are deeply conserved, providing a path for in vivo testing to reveal their cis-regulated genes and biological roles.


Subject(s)
Enhancer Elements, Genetic/genetics , MicroRNAs/genetics , Retinal Vasculitis/genetics , Alleles , Animals , Conserved Sequence/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Genome-Wide Association Study , Humans , MEF2 Transcription Factors/genetics , Mutation , Polymorphism, Single Nucleotide/genetics , Retina/metabolism , Retina/pathology , Retinal Vasculitis/pathology , Zebrafish/genetics
5.
Methods ; 62(3): 292-303, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23707495

ABSTRACT

Video processing is increasingly becoming a standard procedure in zebrafish behavior investigations as it enables higher research throughput and new or better measures. This trend, fostered by the ever increasing performance-to-price ratio of the required recording and processing equipment, should be expected to continue in the foreseeable future, with video-processing based methods permeating more and more experiments and, as a result, expanding the very role of behavioral studies in zebrafish research. To assess whether the routine video tracking of zebrafish larvae directly in the Petri dish is a capability that can be expected in the near future, the key processing concepts are discussed and illustrated on published zebrafish studies when available or other animals when not.


Subject(s)
Behavior, Animal/physiology , Larva/physiology , Motor Activity/physiology , Video Recording/methods , Zebrafish/physiology , Animals , Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Time-Lapse Imaging , Video Recording/statistics & numerical data
6.
J Comp Physiol B ; 194(3): 241-252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38324048

ABSTRACT

Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.


Subject(s)
Homeostasis , Oxidation-Reduction , Sleep , Animals , Sleep/physiology , Reactive Oxygen Species/metabolism , Phylogeny , Neuropeptides/metabolism , Neuropeptides/genetics , Biological Evolution , Humans
7.
J Comp Physiol B ; 194(3): 253-263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38396062

ABSTRACT

Individuals with neurodevelopmental disorders experience persistent sleep deficits, and there is increasing evidence that sleep dysregulation is an underlying cause, rather than merely an effect, of the synaptic and behavioral defects observed in these disorders. At the molecular level, dysregulation of the synaptic proteome is a common feature of neurodevelopmental disorders, though the mechanism connecting these molecular and behavioral phenotypes is an ongoing area of investigation. A role for eIF2α in shifting the local proteome in response to changes in the conditions at the synapse has emerged. Here, we discuss recent progress in characterizing the intersection of local synaptic translation and sleep and propose a reciprocal mechanism of dysregulation in the development of synaptic plasticity defects in neurodevelopmental disorders.


Subject(s)
Neurodevelopmental Disorders , Neuronal Plasticity , Sleep , Synapses , Neuronal Plasticity/physiology , Neurodevelopmental Disorders/physiopathology , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism , Animals , Humans , Sleep/physiology , Synapses/physiology , Protein Biosynthesis , Eukaryotic Initiation Factor-2/metabolism
8.
Nat Commun ; 15(1): 5613, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965236

ABSTRACT

Advancements in CRISPR technology, particularly the development of base editors, revolutionize genetic variant research. When combined with model organisms like zebrafish, base editors significantly accelerate and refine in vivo analysis of genetic variations. However, base editors are restricted by protospacer adjacent motif (PAM) sequences and specific editing windows, hindering their applicability to a broad spectrum of genetic variants. Additionally, base editors can introduce unintended mutations and often exhibit reduced efficiency in living organisms compared to cultured cell lines. Here, we engineer a suite of adenine base editors (ABEs) called ABE-Ultramax (Umax), demonstrating high editing efficiency and low rates of insertions and deletions (indels) in zebrafish. The ABE-Umax suite of editors includes ABEs with shifted, narrowed, or broadened editing windows, reduced bystander mutation frequency, and highly flexible PAM sequence requirements. These advancements have the potential to address previous challenges in disease modeling and advance gene therapy applications.


Subject(s)
Adenine , CRISPR-Cas Systems , Gene Editing , INDEL Mutation , Zebrafish , Zebrafish/genetics , Animals , Gene Editing/methods , Adenine/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Animals, Genetically Modified , Alleles
9.
iScience ; 27(4): 109259, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510125

ABSTRACT

Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a translational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysregulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator integrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation, thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in FXS and neurodevelopmental disorders more broadly.

11.
Proc Natl Acad Sci U S A ; 106(51): 21942-7, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-19966231

ABSTRACT

In mammals, hypocretin/orexin (HCRT) neuropeptides are important sleep-wake regulators and HCRT deficiency causes narcolepsy. In addition to fragmented wakefulness, narcoleptic mammals also display sleep fragmentation, a less understood phenotype recapitulated in the zebrafish HCRT receptor mutant (hcrtr-/-). We therefore used zebrafish to study the potential mediators of HCRT-mediated sleep consolidation. Similar to mammals, zebrafish HCRT neurons express vesicular glutamate transporters indicating conservation of the excitatory phenotype. Visualization of the entire HCRT circuit in zebrafish stably expressing hcrt:EGFP revealed parallels with established mammalian HCRT neuroanatomy, including projections to the pineal gland, where hcrtr mRNA is expressed. As pineal-produced melatonin is a major sleep-inducing hormone in zebrafish, we further studied how the HCRT and melatonin systems interact functionally. mRNA level of arylalkylamine-N-acetyltransferase (AANAT2), a key enzyme of melatonin synthesis, is reduced in hcrtr-/- pineal gland during the night. Moreover, HCRT perfusion of cultured zebrafish pineal glands induces melatonin release. Together these data indicate that HCRT can modulate melatonin production at night. Furthermore, hcrtr-/- fish are hypersensitive to melatonin, but not other hypnotic compounds. Subthreshold doses of melatonin increased the amount of sleep and consolidated sleep in hcrtr-/- fish, but not in the wild-type siblings. These results demonstrate the existence of a functional HCRT neurons-pineal gland circuit able to modulate melatonin production and sleep consolidation.


Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , Melatonin/physiology , Neuropeptides/physiology , Sleep , Wakefulness , Zebrafish/physiology , Animals , Melatonin/biosynthesis , Orexin Receptors , Orexins , Pineal Gland/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/physiology
12.
Sleep Med Rev ; 63: 101616, 2022 06.
Article in English | MEDLINE | ID: mdl-35381445

ABSTRACT

Neurological disorders encompass an extremely broad range of conditions, including those that present early in development and those that progress slowly or manifest with advanced age. Although these disorders have distinct underlying etiologies, the activation of shared pathways, e.g., integrated stress response (ISR) and the development of shared phenotypes (sleep deficits) may offer clues toward understanding some of the mechanistic underpinnings of neurologic dysfunction. While it is incontrovertibly complex, the relationship between sleep and persistent stress in the brain has broad implications in understanding neurological disorders from development to degeneration. The convergent nature of the ISR could be a common thread linking genetically distinct neurological disorders through the dysregulation of a core cellular homeostasis pathway.


Subject(s)
Nervous System Diseases , Humans , Sleep
13.
Science ; 375(6583): eabh3021, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35201886

ABSTRACT

Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.


Subject(s)
Aging , Neurons/physiology , Orexins/physiology , Sleep Deprivation/physiopathology , Sleep , Wakefulness , Aminopyridines/pharmacology , Animals , CRISPR-Cas Systems , Electroencephalography , Electromyography , Female , Hypothalamic Area, Lateral/physiopathology , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Male , Mice , Narcolepsy/genetics , Narcolepsy/physiopathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Pathways , Optogenetics , Patch-Clamp Techniques , RNA-Seq , Sleep Quality
14.
Curr Biol ; 18(4): 276-81, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18291651

ABSTRACT

During gastrulation, dramatic movements rearrange cells into three germ layers expanded over the entire embryo [1-3]. In fish, both endoderm and mesoderm are specified as a belt at the embryo margin. Mesodermal layer expansion is achieved through the combination of two directed migrations. The outer ring of precursors moves toward the vegetal pole and continuously seeds mesodermal cells inside the embryo, which then reverse their movement in the direction of the animal pole [3-6]. Unlike mesoderm, endodermal cells internalize at once and must therefore adopt a different strategy to expand over the embryo [7, 8]. With live imaging of YFP-expressing zebrafish endodermal cells, we demonstrate that in contrast to mesoderm, internalized endodermal cells display a nonoriented/noncoordinated movement fit by a random walk that rapidly disperses them over the yolk surface. Transplantation experiments reveal that this behaviour is largely cell autonomous, induced by TGF-beta/Nodal, and dependent on the downstream effector Casanova. At midgastrulation, endodermal cells switch to a convergence movement. We demonstrate that this switch is triggered by environmental cues. These results uncover random walk as a novel Nodal-induced gastrulation movement and as an efficient strategy to transform a localized cell group into a layer expanded over the embryo.


Subject(s)
Cell Movement/physiology , Endoderm/cytology , Gastrulation/physiology , Zebrafish/embryology , Animals , Animals, Genetically Modified/embryology , Animals, Genetically Modified/physiology , Embryonic Induction/physiology , Endoderm/physiology , High Mobility Group Proteins/metabolism , Nodal Protein , SOX Transcription Factors , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Zebrafish/physiology , Zebrafish Proteins/metabolism
15.
Curr Opin Neurobiol ; 71: 44-51, 2021 12.
Article in English | MEDLINE | ID: mdl-34583217

ABSTRACT

All animals carefully studied sleep, suggesting that sleep as a behavioral state exists in all animal life. Such evolutionary maintenance of an otherwise vulnerable period of environmental detachment suggests that sleep must be integral in fundamental biological needs. Despite over a century of research, the knowledge of what sleep does at the tissue, cellular or molecular levels remain cursory. Currently, sleep is defined based on behavioral criteria and physiological measures rather than at the cellular or molecular level. Physiologically, sleep has been described as two main states, non-rapid eye moment (NREM) and REM/paradoxical sleep (PS), which are defined in the neocortex by synchronous oscillations and paradoxical wake-like activity, respectively. For decades, these two sleep states were believed to be defining characteristics of only mammalian and avian sleep. Recent work has revealed slow oscillation, silencing, and paradoxical/REM-like activities in reptiles, fish, flies, worms, and cephalopods suggesting that these sleep dynamics and associated physiological states may have emerged early in animal evolution. Here, we discuss these recent developments supporting the conservation of neural dynamics (silencing, oscillation, paradoxical activity) of sleep states across phylogeny.


Subject(s)
Neocortex , Sleep, REM , Animals , Electroencephalography , Mammals , Phylogeny , Sleep/physiology , Sleep, REM/physiology , Wakefulness/physiology
16.
PLoS Biol ; 5(10): e277, 2007 Oct 16.
Article in English | MEDLINE | ID: mdl-17941721

ABSTRACT

Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin) in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Sleep Initiation and Maintenance Disorders/metabolism , Sleep/physiology , Zebrafish Proteins/metabolism , Zebrafish/physiology , Amino Acid Sequence , Animals , Arousal/physiology , Behavior, Animal/physiology , Biogenic Monoamines/metabolism , Brain/anatomy & histology , Brain/metabolism , Homeostasis , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Light , Molecular Sequence Data , Neuropeptides/metabolism , Orexin Receptors , Orexins , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Sequence Alignment , Sleep Deprivation , Zebrafish/anatomy & histology , Zebrafish/embryology , Zebrafish Proteins/genetics
17.
Curr Biol ; 29(12): R585-R588, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31211981

ABSTRACT

A novel potential role of sleep is neuronal DNA repair. Live imaging of chromosome dynamics in zebrafish neurons has uncovered how sleep can repair DNA breaks accumulated during wake to maintain genome integrity and likely slow down neuronal aging.


Subject(s)
Neurons , Sleep , Animals , Chromosomes , DNA Damage , DNA Repair
18.
Curr Biol ; 28(9): R558-R560, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29738730

ABSTRACT

Sleep durations vary greatly across animals from 2 to 20 hours with no clear explanation. A small Mexican cavefish reveals how the brain can adapt to increase its wake-stabilizing hypocretin circuit and dramatically reduce sleep, likely to allow adaptive foraging.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neuropeptides , Animals , Neurons , Orexins , Prosencephalon , Sleep
19.
Brain Res ; 1174: 66-75, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17868657

ABSTRACT

The hypocretin/orexin (HCRT/ORX) excitatory neuropeptides are expressed in a small population of lateral hypothalamic cells in mammals and fish. In humans, loss of these cells causes the sleep disorder narcolepsy. Identification of genes expressed in HCRT-producing cells may be revealing as to the regulation of sleep and the pathophysiology of narcolepsy. In this study, in situ hybridization analyses were performed to characterize the expression pattern of receptors and enzyme, which regulate ATP-mediated transmission in hypocretin cells of zebrafish larvae. The zebrafish cDNA encoding the ecto-nucleoside triphosphate diphosphohydrolase 3 (ENTPD3/NTPDase3) was isolated. This transcript was found to be expressed in zebrafish HCRT cells as previously reported in mammals. It was also expressed in the cranial nerves (gV, gVII, gIV and gX) and in primary sensory neurons (i.e., Rohon-Beard neurons) in the spinal cord. The expression of known zebrafish p2rx purinergic receptor family members was next studied and found to overlap with the entpd3 expression pattern. Specifically, p2rx2, p2rx3.1, p2rx3.2 and p2rx8 were expressed in the trigeminal ganglia and subsets of Rohon-Beard neurons. In contrast to mammals, p2rx2 was not expressed in HCRT cells; rather, p2rx8 was expressed with entpd3 in this hypothalamic region. The conservation of expression of these genes in HCRT cells and sensory neurons across vertebrates suggests an important role for ATP mediated transmission in the regulation of sleep and the processing of sensory inputs.


Subject(s)
Hypothalamic Area, Lateral/physiology , Intracellular Signaling Peptides and Proteins/physiology , Neurons, Afferent/physiology , Neuropeptides/physiology , Pyrophosphatases/genetics , Receptors, Purinergic P2/genetics , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Cranial Nerves/cytology , Cranial Nerves/immunology , Cranial Nerves/physiology , Embryo, Nonmammalian/physiology , Female , Gene Expression Regulation, Developmental , Hypothalamic Area, Lateral/cytology , Hypothalamic Area, Lateral/embryology , Male , Molecular Sequence Data , Orexins , Spinal Cord/cytology , Spinal Cord/immunology , Spinal Cord/physiology , Zebrafish
20.
Neural Regen Res ; 12(11): 1765-1767, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29239312

ABSTRACT

In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

SELECTION OF CITATIONS
SEARCH DETAIL