Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genome Res ; 34(6): 967-978, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39038849

ABSTRACT

The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and functionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional analyses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learning classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were observed in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, disease, and regional signatures of the gut microbiota across different cohorts.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Metagenomics , Humans , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Machine Learning , Fusobacterium nucleatum/genetics , Bacteria/classification , Bacteria/genetics
2.
BMC Oral Health ; 24(1): 869, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085908

ABSTRACT

BACKGROUND: The global rise in the elderly population has increased the prevalence of root caries. Streptococcus mutans, Lactobacilli and Actinomyces are considered the primary pathogens of dental caries in culture-based studies. This study aimed to investigate bacterial profiles in coronal and root caries lesions and determine the association of specific bacterial genera at each site. METHODS: Dentine samples from carious lesions were collected from 22 extracted teeth using an excavator. Microbial DNA was extracted from the samples using a protocol developed for this study. 16S rRNA gene amplicon sequencing was employed for microbial analysis. PCR amplification targeted the V3-V4 region of the bacterial 16S rRNA, and the amplicon sequencing used an Illumina MiSeq system (2 × 300 bp paired-end reads). Statistical analysis was performed by the Phyloseq and DESeq2 packages in R. RESULTS: In coronal caries, Olsenella, Lactobacillus and Prevotella were the most prevalent genera, comprising approximately 70% of the microbiome community. In the root caries, however, although Olsenella, Prevotella and Lactobacillus remained the dominant genera, they accounted for only half of the microbiome community. This study identified significant differences in alpha diversity indices between the coronal and root caries. LEfSE analysis revealed several unique genera in each caries lesion. CONCLUSION: The microbiome of root caries lesions was richer and more complex than the coronal caries microbiota. The results suggest that lesion-related variations in the oral microflora may be detected in carious dentine.


Subject(s)
Dental Caries , Microbiota , Root Caries , Humans , Root Caries/microbiology , Dental Caries/microbiology , RNA, Ribosomal, 16S/analysis , DNA, Bacterial/analysis , Middle Aged , Male , Female , Adult , Dentin/microbiology , Aged
3.
J Biol Chem ; 298(10): 102419, 2022 10.
Article in English | MEDLINE | ID: mdl-36037968

ABSTRACT

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Subject(s)
Candida albicans , Candidiasis, Oral , ErbB Receptors , Fungal Proteins , Mouth Mucosa , Humans , Candida albicans/metabolism , Candida albicans/pathogenicity , Cytokines/metabolism , ErbB Receptors/metabolism , Fungal Proteins/metabolism , Shc Signaling Adaptor Proteins/metabolism , Candidiasis, Oral/metabolism , Candidiasis, Oral/microbiology , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , Epithelial Cells/metabolism , Epithelial Cells/microbiology
4.
Infect Immun ; 91(2): e0033322, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36625602

ABSTRACT

The human lung is constantly exposed to Aspergillus fumigatus spores, the most prevalent worldwide cause of fungal respiratory disease. Pulmonary tissue damage is a unifying feature of Aspergillus-related diseases; however, the mechanistic basis of damage is not understood. In the lungs of susceptible hosts, A. fumigatus undergoes an obligatory morphological switch involving spore germination and hyphal growth. We modeled A. fumigatus infection in cultured A549 human pneumocytes, capturing the phosphoactivation status of five host signaling pathways, nuclear translocation and DNA binding of eight host transcription factors, and expression of nine host response proteins over six time points encompassing exposures to live fungus and the secretome thereof. The resulting data set, comprised of more than 1,000 data points, reveals that pneumocytes mount differential responses to A. fumigatus spores, hyphae, and soluble secreted products via the NF-κB, JNK, and JNK + p38 pathways, respectively. Importantly, via selective degradation of host proinflammatory (IL-6 and IL-8) cytokines and growth factors (FGF-2), fungal secreted products reorchestrate the host response to fungal challenge as well as driving multiparameter epithelial damage, culminating in cytolysis. Dysregulation of NF-κB signaling, involving sequential stimulation of canonical and noncanonical signaling, was identified as a significant feature of host damage both in vitro and in a mouse model of invasive aspergillosis. Our data demonstrate that composite tissue damage results from iterative (repeated) exposures to different fungal morphotypes and secreted products and suggest that modulation of host responses to fungal challenge might represent a unified strategy for therapeutic control of pathologically distinct types of Aspergillus-related disease.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Animals , Mice , Humans , NF-kappa B/metabolism , Lung/microbiology , Homeostasis , Spores, Fungal
5.
J Periodontal Res ; 58(6): 1272-1280, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37787434

ABSTRACT

OBJECTIVE: The aim of this study was to investigate metabolomics markers in the saliva of patients with periodontal health, gingivitis and periodontitis. BACKGROUND: The use of metabolomics for diagnosing and monitoring periodontitis is promising. Although several metabolites have been reported to be altered by inflammation, few studies have examined metabolomics in saliva collected from patients with different periodontal phenotypes. METHODS: Saliva samples collected from a total of 63 patients were analysed by nuclear magnetic resonance (NMR) followed by ELISA for interleukin (IL)-1ß. The patient sample, well-characterised clinically, included periodontal health (n = 8), gingivitis (n = 19) and periodontitis (n = 36) cases, all non-smokers and not diabetic. RESULTS: Periodontal diagnosis (healthy/gingivitis/periodontitis) was not associated with any salivary metabolites in this exploratory study. Periodontal staging showed nominal associations with acetoin (p = .030) and citrulline (p = .047). Among other investigated variables, the use of systemic antibiotics in the previous 3 months was associated with higher values of the amino acids taurine, glycine and ornithine (p = .002, p = .05 and p = .005, respectively, at linear regression adjusted for age, gender, ethnicity, body mass index and staging). CONCLUSION: While periodontal staging was marginally associated with some salivary metabolites, other factors such as systemic antibiotic use may have a much more profound effect on the microbial metabolites in saliva. Metabolomics in periodontal disease is still an underresearched area that requires further observational studies on large cohorts of patients, aiming to obtain data to be used for clinical translation.


Subject(s)
Gingivitis , Periodontal Diseases , Periodontitis , Humans , Saliva/chemistry , Periodontitis/metabolism , Gingivitis/metabolism , Periodontal Diseases/metabolism , Biomarkers/metabolism
6.
Int Endod J ; 56(12): 1499-1516, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37787168

ABSTRACT

AIM: To investigate serum biomarkers of inflammation 2 years following non-surgical root canal re-treatment (Re-RCT) and peri-apical surgery (PS). The results were correlated with signs and symptoms, treatment outcome, metabolic syndrome factors, infection with severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 (COVID-19) infection and COVID-19 vaccination. METHODOLOGY: Subjects from our previous study were recalled for 2 years post-treatment follow-up. Changes to the patient's history (medical, dental, social) were noted. Periapical health of the treated teeth was examined both clinically and radiographically. Blood pressure, fasting HbA1C and low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides and total cholesterol (TC) levels were measured. Serum inflammatory marker levels were assayed using a Bio-Rad Bio-Plex 200 analyser and values at different time points within the same group were compared using a Wilcoxon signed-rank test and differences between groups with a Mann-Whitney test. Linear associations were tested using Pearson's correlations. RESULTS: The recall percentage at 2 years was 56.9% (n = 37), with a 100% radiographic success rate using periapical radiographs. In total, 21 cases (56.8%) were completely healed, and 16 cases (43.2%) were healing. Higher matrix metalloprotease 2 (MMP2) levels were present in the healing group compared to the healed group. Serum levels of high-sensitivity C-reactive protein (hs-CRP), asymmetric dimethylarginine (ADMA) and MMP-2 were significantly reduced (p ≤ .001) whereas other biomarkers showed significant increases at 2 year compared to pre-operative levels, while FGF-23 and ICAM-1 were not significantly increased. HbA1C (p = .015), TC (p = .003), LDL (p = .003) and HDL (p = .003) reduced significantly at 2 years post-treatment compared to their preoperative levels. COVID infection showed a significant association with MMP-9 (p = .048). CONCLUSIONS: hs-CRP, ADMA and MMP-2 can be regarded as prognostic biomarkers of successful Re-RCT and PS as they reduced at 2 year recall in cases which showed evidence of clinical and radiographic success. The successful treatment of chronic apical periodontitis is correlated with improvements in metabolic syndrome indicators, better glycemic control, and reduction at 2 year of some systemic inflammatory markers which are related to risks of cardiovascular disease events.


Subject(s)
COVID-19 , Cardiovascular Diseases , Metabolic Syndrome , Humans , C-Reactive Protein , Matrix Metalloproteinase 2 , COVID-19 Vaccines , Glycated Hemoglobin , Biomarkers
7.
Cell Microbiol ; 23(10): e13371, 2021 10.
Article in English | MEDLINE | ID: mdl-34085369

ABSTRACT

Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.


Subject(s)
Candidiasis , Fungal Proteins , Candida albicans , Epithelial Cells , Humans , Necrosis
8.
Nature ; 532(7597): 64-8, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27027296

ABSTRACT

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Subject(s)
Candida albicans/metabolism , Candida albicans/pathogenicity , Cytotoxins/metabolism , Fungal Proteins/toxicity , Mycotoxins/toxicity , Virulence Factors/metabolism , Calcium/metabolism , Candida albicans/immunology , Candidiasis/metabolism , Candidiasis/microbiology , Candidiasis/pathology , Cell Membrane Permeability/drug effects , Cytotoxins/genetics , Cytotoxins/toxicity , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/pathology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Host-Pathogen Interactions/immunology , Humans , Mucous Membrane/microbiology , Mucous Membrane/pathology , Mycotoxins/genetics , Mycotoxins/metabolism , Signal Transduction/drug effects , Virulence/drug effects , Virulence Factors/genetics , Virulence Factors/toxicity
9.
Int Endod J ; 55(9): 923-937, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35707939

ABSTRACT

AIM: The aim of the study was to measure serum levels of molecular markers of inflammation in patients undergoing non-surgical root canal retreatment (Re-RCT) and periapical surgery (PS) for the treatment of apical periodontitis and to establish if such levels are influenced by the size of apical radiolucencies at baseline and by the treatment outcome. METHODOLOGY: A total of 115 participants were recruited (n = 50 Controls, n = 35 Re-RCT, n = 30 PS). Preoperative periapical radiographs and cone beam CT (CBCT) scans of teeth were taken. Blood was collected from treatment groups at baseline, 3-, 6-, and 12-month post-treatment and from controls at baseline and 12 months. Serum levels of IL-1ß, IL-6, IL-8, TNF-α, Pentraxin 3, ICAM-1, VCAM-1, hs-CRP, FGF-23, MMP-2, MMP-8, MMP-9, C3 and ADMA were analysed using multiplex immunoassay and enzyme-linked immunosorbent assay. Different time points within the same group were compared using Wilcoxon signed-rank test, and differences between groups were analysed using the Mann-Whitney test. Non-linear association between different factors was assessed using Spearman's correlation. RESULTS: Preoperative serum levels of FGF-23, IL-1ß, hs-CRP and ADMA were significantly higher in the diseased groups compared with controls (p < .001; p = .008; p < .001; p = .013, respectively). The preoperative size of the radiolucency was associated with increased levels of FGF-23, IL-1ß and IL-6. At 3-months following treatment, IL-1ß, IL-8, hs-CRP, C3, MMP-2 and MMP-9 levels increased compared with baseline in treatment groups. IL-1ß and IL-8 further increased at 6 months, whereas FGF-23, hs-CRP, C3, MMP2 and MMP-9 decreased. One-year post-treatment, FGF-23, pentraxin-3 and ADMA were significantly reduced below baseline levels. At the 1-year review, CBCT revealed that 25.9% of treated cases completely healed, while 63% were healing, and 11.1% failed. Treatment outcome was found to be influenced by preoperative levels of ADMA and IL-8 levels at 6 months. CONCLUSIONS: Both symptomatic and asymptomatic apical periodontitis (AP) can contribute to increased levels of molecular markers of inflammation. A further transient inflammatory markers rise after root canal retreatment and apical surgery were demonstrated. Successful endodontic treatment and periapical surgery result in a long-term reduction in inflammatory marker levels.


Subject(s)
C-Reactive Protein , Periapical Periodontitis , Biomarkers , Dental Pulp Cavity , Humans , Inflammation , Interleukin-6 , Interleukin-8 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Periapical Periodontitis/diagnostic imaging , Periapical Periodontitis/surgery , Retreatment , Root Canal Therapy
10.
Semin Cell Dev Biol ; 89: 58-70, 2019 05.
Article in English | MEDLINE | ID: mdl-29501618

ABSTRACT

The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.


Subject(s)
Candida albicans/immunology , Immunity, Innate , Mycoses/immunology , Candida albicans/pathogenicity , Cytokines/biosynthesis , Cytokines/immunology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Humans , Hyphae/immunology , Hyphae/pathogenicity , Mucous Membrane/immunology , Mucous Membrane/microbiology , Mycoses/microbiology
11.
J Immunol ; 201(2): 627-634, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29891557

ABSTRACT

Protection against microbial infection by the induction of inflammation is a key function of the IL-1 superfamily, including both classical IL-1 and the new IL-36 cytokine families. Candida albicans is a frequent human fungal pathogen causing mucosal infections. Although the initiators and effectors important in protective host responses to C. albicans are well described, the key players in driving these responses remain poorly defined. Recent work has identified a central role played by IL-1 in inducing innate Type-17 immune responses to clear C. albicans infections. Despite this, lack of IL-1 signaling does not result in complete loss of immunity, indicating that there are other factors involved in mediating protection to this fungus. In this study, we identify IL-36 cytokines as a new player in these responses. We show that C. albicans infection of the oral mucosa induces the production of IL-36. As with IL-1α/ß, induction of epithelial IL-36 depends on the hypha-associated peptide toxin Candidalysin. Epithelial IL-36 gene expression requires p38-MAPK/c-Fos, NF-κB, and PI3K signaling and is regulated by the MAPK phosphatase MKP1. Oral candidiasis in IL-36R-/- mice shows increased fungal burdens and reduced IL-23 gene expression, indicating a key role played by IL-36 and IL-23 in innate protective responses to this fungus. Strikingly, we observed no impact on gene expression of IL-17 or IL-17-dependent genes, indicating that this protection occurs via an alternative pathway to IL-1-driven immunity. Thus, IL-1 and IL-36 represent parallel epithelial cell-driven protective pathways in immunity to oral C. albicans infection.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Fungal Proteins/metabolism , Interleukin-17/metabolism , Interleukin-1/metabolism , Mouth Mucosa/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Gene Expression Regulation , Immunity, Innate , Interleukin-23/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouth Mucosa/microbiology , Receptors, Interleukin-1/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Oral Dis ; 26 Suppl 1: 59-68, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32862522

ABSTRACT

This Basic Science Workshop addressed the oral microbiome. At the 7th World Workshop on Oral Health & Disease in HIV/AIDS in India in 2014, some aspects of the human microbiome were discussed, and research questions formulated. Since that time, there have been major advances in technology, which have stimulated a number of publications on many aspects of the human microbiome, including the oral cavity. This workshop aimed to summarize current understanding of the "normal" microbiome of the oral cavity compared to that during HIV infection, and how oral immune factors and other clinical variables alter or control the oral microbiome. An important question is whether successful treatment with anti-retroviral therapy, which leads to a significant drop in viral loads and immune reconstitution, is associated with any change or recovery of the oral microbiome. Additionally, the workshop addressed the issue of which parameters are most appropriate/correct to evaluate the oral microbiome and how clinically relevant are shifts/changes in the oral microbiome. The workshop evaluated current knowledge in five research areas related to five basic questions and identified further topics where further research is required.


Subject(s)
HIV Infections , Microbiota , Mouth Diseases , HIV Infections/drug therapy , HIV Infections/microbiology , Humans , India , Mouth Diseases/microbiology , Mouth Diseases/virology
13.
J Infect Dis ; 220(9): 1477-1488, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31401652

ABSTRACT

BACKGROUND: Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. METHODS: In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. RESULTS: Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. CONCLUSIONS: The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections.


Subject(s)
Candida albicans/immunology , Candida albicans/metabolism , Candidiasis, Invasive/microbiology , Candidiasis, Invasive/pathology , Fungal Proteins/metabolism , Neutrophil Infiltration , Virulence Factors/metabolism , Animals , Candida albicans/growth & development , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Female , Male , Mice, Inbred BALB C , Signal Transduction , Survival Analysis , Virulence , Zebrafish
14.
Infect Immun ; 86(2)2018 02.
Article in English | MEDLINE | ID: mdl-29109176

ABSTRACT

Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1ß, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Subject(s)
Candida albicans/pathogenicity , Epithelial Cells/microbiology , Fungal Proteins/metabolism , Mucous Membrane/microbiology , Animals , Candidiasis, Vulvovaginal/immunology , Candidiasis, Vulvovaginal/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Female , Fungal Proteins/pharmacology , Humans , Mice , Mucous Membrane/pathology , Neutrophil Infiltration/immunology , Signal Transduction , Vagina/immunology , Vagina/metabolism , Vagina/microbiology , Virulence Factors
15.
Infect Immun ; 83(4): 1705-14, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25667269

ABSTRACT

Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation.


Subject(s)
Arthrodermataceae/immunology , Dermatomycoses/immunology , Keratinocytes/microbiology , MAP Kinase Signaling System/immunology , Trichophyton/immunology , Arthrodermataceae/pathogenicity , Cells, Cultured , Dual Specificity Phosphatase 1/biosynthesis , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Immunity, Innate , JNK Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Transcription Factor AP-1/biosynthesis , Trichophyton/pathogenicity , p38 Mitogen-Activated Protein Kinases/metabolism
16.
J Infect Dis ; 209(11): 1816-26, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24357630

ABSTRACT

BACKGROUND: The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage. METHODS: Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans-induced damage protection was determined using chemical inhibitors. RESULTS: Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation. CONCLUSIONS: PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling.


Subject(s)
Candida albicans/physiology , Epithelial Cells/microbiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , Gene Expression Regulation/immunology , Humans , Hyphae , Phosphatidylinositol 3-Kinases/genetics , Protein Array Analysis , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/immunology , TOR Serine-Threonine Kinases/genetics , Transcriptome
17.
Microbes Infect ; 26(4): 105305, 2024.
Article in English | MEDLINE | ID: mdl-38296157

ABSTRACT

The liver, and more specifically, the liver sinusoidal endothelial cells, constitute the beginning of one of the most important responses for the elimination of hematogenously disseminated Candida albicans. Therefore, we aimed to study the mechanisms involved in the interaction between these cells and C. albicans. Transcriptomics-based analysis showed an increase in the expression of genes related to the immune response (including receptors, cytokines, and adhesion molecules), as well as to aerobic glycolysis. Further in vitro analyses showed that IL-6 production in response to C. albicans is controlled by MyD88- and SYK-pathways, suggesting an involvement of Toll-like and C-type lectin receptors and the subsequent activation of the MAP-kinases and c-Fos/AP-1 transcription factor. In addition, liver sinusoidal endothelial cells undergo metabolic reprogramming towards aerobic glycolysis induced by C. albicans, as confirmed by the increased Extracellular Acidification Rate and the overexpression of enolase (Eno2), hexonikase (Hk2) and glucose transporter 1 (Slc2a1). In conclusion, these results indicate that the hepatic endothelium responds to C. albicans by increasing aerobic glycolysis and promoting an inflammatory environment.


Subject(s)
Candida albicans , Endothelial Cells , Glycolysis , Liver , Candida albicans/immunology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Animals , Liver/metabolism , Liver/microbiology , Syk Kinase/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Mice , Myeloid Differentiation Factor 88/metabolism , Inflammation/metabolism , Gene Expression Profiling , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism
18.
J Immunol Methods ; 532: 113731, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059745

ABSTRACT

Innate and adaptive immune responses at mucosal surfaces play a role in protection against most infectious diseases. However, the relative importance either of mucosal versus systemic, or of cellular versus humoral immunity in protection against such infections remains unclear. We aimed to determine the relative percentages and reproducibility of detection of five major T lymphocyte phenotypes in stimulated whole mouth fluid (SWMF); to compare matched mucosal and blood phenotypes; to evaluate the consistency of phenotypes in SWMF over time; and to determine any associations with age or gender. Peripheral blood and SWMF samples were collected from 194 participants and sequential concomitant samples were collected from 27 of those and from 12 subjects living with HIV. CD3, CD4, CD8, Th1 and Th2 T lymphocyte phenotypes were determined by FACS. All the five T lymphocyte phenotypes were detected consistently by FACS in PBMC and SWMF with experimental replicates (N = 10; PBMC CV: 3-30%; SWMF CV: 12-36%). In longitudinal samples detection rates were reproducible in both fluids but variations were higher in SWMF (CV: 23-79.6%) than PBMC (CV: 9.7-75%). Statistically significant correlations of the percentages of all the T lymphocyte phenotypes except CD8 was seen between the two fluids. In PBMCs a negative correlation with age was found with CD3, CD4 and CD8 phenotypes, whilst a positive correlation was found in both SWMF and PBMC with the Th2 phenotype. CD3, CD4 and CD8 phenotypes in SWMF and PBMCs from an HIV-positive cohort were not significantly correlated in contrast with the HIV-negative controls. Our study provides a robust FACS protocol for the detection of the five major T lymphocyte phenotypes in SWMF which should prove useful for research with other mucosal fluids.


Subject(s)
Flow Cytometry , Humans , Female , Male , Adult , Middle Aged , Flow Cytometry/methods , Immunophenotyping/methods , HIV Infections/immunology , HIV Infections/diagnosis , Phenotype , Age Factors , Aged , Young Adult , Sex Factors , Mouth Mucosa/immunology , Reproducibility of Results , Adolescent , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology
19.
NPJ Biofilms Microbiomes ; 10(1): 80, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39245657

ABSTRACT

Species composition of the healthy adult gut microbiota tends to be stable over time. Destabilization of the gut microbiome under the influence of different factors is the main driver of the microbial dysbiosis and subsequent impacts on host physiology. Here, we used metagenomics data from a Swedish longitudinal cohort, to determine the stability of the gut microbiome and uncovered two distinct microbial species groups; persistent colonizing species (PCS) and transient colonizing species (TCS). We validated the continuation of this grouping, generating gut metagenomics data for additional time points from the same Swedish cohort. We evaluated the existence of PCS/TCS across different geographical regions and observed they are globally conserved features. To characterize PCS/TCS phenotypes, we performed bioreactor fermentation with faecal samples and metabolic modeling. Finally, using chronic disease gut metagenome and other multi-omics data, we identified roles of TCS in microbial dysbiosis and link with abnormal changes to host physiology.


Subject(s)
Bacteria , Dysbiosis , Feces , Gastrointestinal Microbiome , Metagenomics , Dysbiosis/microbiology , Humans , Metagenomics/methods , Sweden , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Longitudinal Studies , Metagenome , Adult , Bioreactors/microbiology , Fermentation
20.
Antimicrob Agents Chemother ; 57(10): 5178-80, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23896471

ABSTRACT

The pathology of vulvovaginal candidiasis (VVC) caused by Candida albicans is associated with a nonprotective inflammatory response and is frequently treated with clotrimazole. We investigated the mechanisms by which clotrimazole resolves VVC. Low levels of clotrimazole, which do not block fungal growth, inhibit expression of a "danger response" transcription factor, c-Fos, block production of proinflammatory cytokines, and inhibit neutrophil infiltration to the site of infection.


Subject(s)
Candidiasis, Vulvovaginal/drug therapy , Clotrimazole/therapeutic use , Neutrophil Infiltration/drug effects , Candida albicans/drug effects , Candida albicans/pathogenicity , Candidiasis, Vulvovaginal/immunology , Cell Line , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL