Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Proc Natl Acad Sci U S A ; 121(33): e2405964121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39121161

ABSTRACT

Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.


Subject(s)
Adaptor Proteins, Signal Transducing , Autophagy-Related Proteins , Ubiquitination , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Humans , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Ubiquitin/metabolism , Ubiquitin/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Ubiquitinated Proteins/metabolism , Ubiquitinated Proteins/isolation & purification , Ubiquitinated Proteins/chemistry , Phase Separation
2.
Blood ; 141(18): 2194-2205, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36796016

ABSTRACT

Peripheral T-cell lymphomas (PTCL) with T-follicular helper phenotype (PTCL-TFH) has recurrent mutations affecting epigenetic regulators, which may contribute to aberrant DNA methylation and chemoresistance. This phase 2 study evaluated oral azacitidine (CC-486) plus cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) as initial treatment for PTCL. CC-486 at 300 mg daily was administered for 7 days before C1 of CHOP, and for 14 days before CHOP C2-6. The primary end point was end-of-treatment complete response (CR). Secondary end points included safety and survival. Correlative studies assessed mutations, gene expression, and methylation in tumor samples. Grade 3 to 4 hematologic toxicities were mostly neutropenia (71%), with febrile neutropenia uncommon (14%). Nonhematologic toxicities included fatigue (14%) and gastrointestinal symptoms (5%). In 20 evaluable patients, CR was 75%, including 88.2% for PTCL-TFH (n = 17). The 2-year progression-free survival (PFS) was 65.8% for all and 69.2% for PTCL-TFH, whereas 2-year overall survival (OS) was 68.4% for all and 76.1% for PTCL-TFH. The frequencies of the TET2, RHOA, DNMT3A, and IDH2 mutations were 76.5%, 41.1%, 23.5%, and 23.5%, respectively, with TET2 mutations significantly associated with CR (P = .007), favorable PFS (P = .004) and OS (P = .015), and DNMT3A mutations associated with adverse PFS (P = .016). CC-486 priming contributed to the reprograming of the tumor microenvironment by upregulation of genes related to apoptosis (P < .01) and inflammation (P < .01). DNA methylation did not show significant shift. This safe and active regimen is being further evaluated in the ALLIANCE randomized study A051902 in CD30-negative PTCL. This trial was registered at www.clinicaltrials.gov as #NCT03542266.


Subject(s)
Lymphoma, T-Cell, Peripheral , Humans , Lymphoma, T-Cell, Peripheral/pathology , Azacitidine/adverse effects , Doxorubicin , Prednisone/adverse effects , Vincristine , Cyclophosphamide/adverse effects , Immunologic Factors/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Tumor Microenvironment
3.
Blood ; 139(8): 1147-1159, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34428285

ABSTRACT

Resistance to standard immunochemotherapy remains an unmet challenge in diffuse large B-cell lymphoma (DLBCL), and aberrant DNA methylation may contribute to chemoresistance. Promising early-phase results were reported with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) plus subcutaneous azacitidine, a hypomethylating agent. In this phase 1 study, we evaluated CC-486 (oral azacitidine) plus 6 cycles of R-CHOP in patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. CC-486 doses of 100, 150, 200, or 300 mg given 7 days before cycle 1 and on days 8-21 of cycles 1-5 were evaluated; additional patients were enrolled in the expansion phase to examine preliminary efficacy. The primary objectives were to determine the safety and the maximum tolerated dose (MTD) of CC-486 in combination with R-CHOP. The most common grade 3/4 toxicities were hematologic, including neutropenia (62.7%) and febrile neutropenia (25.4%); grade 3/4 nonhematologic toxicities were uncommon (<7%). The MTD was not established; 2 patients had dose-limiting toxicities (1 with grade 4 febrile neutropenia; 1 with grade 4 prolonged neutropenia). The recommended phase 2 dose was established as 300 mg. The overall response rate was 94.9%, with 52 patients (88.1%) achieving complete responses. With a median follow-up of 28.9 months, estimated 1- and 2-year progression-free survival rates were 84.1% and 78.6%, respectively. Overall, epigenetic priming with CC-486 before R-CHOP can be delivered with acceptable safety to patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. ClinicalTrials.gov: NCT02343536.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Azacitidine/administration & dosage , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/mortality , Administration, Oral , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/adverse effects , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Disease-Free Survival , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Female , Follow-Up Studies , Humans , Male , Maximum Tolerated Dose , Middle Aged , Prednisone/administration & dosage , Prednisone/adverse effects , Risk Factors , Rituximab/administration & dosage , Rituximab/adverse effects , Survival Rate , Vincristine/administration & dosage , Vincristine/adverse effects
5.
bioRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38559018

ABSTRACT

Ubiquitination is one of the most common post-translational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity towards K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage dependent manner, thus serving as an interpreter of the ubiquitin code.

6.
Mol Cancer Ther ; 21(9): 1485-1496, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35793463

ABSTRACT

Bexarotene is a specific retinoid X receptor agonist that has been used for the treatment of cutaneous T-cell lymphoma (CTCL). Because bexarotene causes hypothyroidism, it requires the administration of levothyroxine. However, levothyroxine, in addition to its ubiquitous nuclear receptors, can activate the αVß3 integrin that is overexpressed in CTCL, potentially interfering the antineoplastic effect of bexarotene. We thus investigated the biological effect of levothyroxine in relation to bexarotene treatment. Although in isolated CTCL cells levothyroxine decreased, in an αVß3-dependent manner, the antineoplastic effect of bexarotene, levothyroxine supplementation in preclinical models was necessary to avoid suppression of lymphoma immunity. Accordingly, selective genetic and pharmacologic inhibition of integrin αVß3 improved the antineoplastic effect of bexarotene plus levothyroxine replacement while maintaining lymphoma immunity. Our results provide a mechanistic rationale for clinical testing of integrin αVß3 inhibitors as part of CTCL regimens based on bexarotene administration. TEASER: Inhibiting αVß3 integrin improves the antineoplastic effect of bexarotene while maintaining lymphoma immunity.


Subject(s)
Anticarcinogenic Agents , Antineoplastic Agents , Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bexarotene/pharmacology , Bexarotene/therapeutic use , Humans , Integrin alphaVbeta3 , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/pathology , Skin Neoplasms/pathology , Tetrahydronaphthalenes/pharmacology , Tetrahydronaphthalenes/therapeutic use , Thyroxine/therapeutic use
7.
J Hematol Oncol ; 13(1): 59, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32448357

ABSTRACT

Peripheral T cell lymphomas are heterogeneous diseases which remain treatment challenges. Recent advances in molecular and genomic profiling have provided unprecedented insight into disease pathogenesis driven by distinct cells of origins and molecular pathways. The discovery and clinical application of molecular biomarkers in PTCL subtypes has the potential to transform personalized care for patients with PTCL in diagnosis, prognosis, and therapy. Targeting CD30+ PTCL with the antibody-drug conjugate brentuximab vedotin in the relapsed setting and in combination with chemotherapy in the frontline setting has improved patient survivals. Epigenetic modifying agents, including HDAC inhibitors and hypomethylating agents, have demonstrated broad clinical efficacy and durability and are in clinical development for combination strategies for both relapsed and frontline settings. Wide-ranging novel agents targeting critical intracellular pathways and tumor microenvironment are in active exploration to define clinical activities. This review summarizes PTCL-specific biomarkers which are increasingly incorporated in clinical practice to guide precision diagnosis and personalized treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Immunoconjugates/therapeutic use , Lymphoma, T-Cell, Peripheral/drug therapy , Molecular Targeted Therapy/methods , Neoplasm Proteins/antagonists & inhibitors , Precision Medicine/methods , Therapies, Investigational/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Consolidation Chemotherapy , Disease Management , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic/drug effects , Forecasting , Humans , Immunoconjugates/pharmacology , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Lymphoma, Extranodal NK-T-Cell/drug therapy , Lymphoma, Large-Cell, Anaplastic/drug therapy , Maintenance Chemotherapy , Precision Medicine/trends , Signal Transduction/drug effects , Tumor Microenvironment/drug effects
8.
PLoS One ; 11(11): e0165595, 2016.
Article in English | MEDLINE | ID: mdl-27820834

ABSTRACT

Chronic inflammation is a hallmark of cancer. Inflammatory chemokines, such as C-C chemokine ligand 2 (CCL2), are often present in tumors but their roles in cancer initiation and maintenance are not clear. Here we report that CCL2 promotes mammary carcinoma development in a clinically relevant murine model of breast cancer. Targeted disruption of Ccl2 slowed the growth of activated Her2/neu-driven mammary tumors and prolonged host survival. Disruption of Ccl2 was associated with a decrease in the development and mobilization of endothelial precursor cells (EPCs) which can contribute to tumor neovascularization. In contrast, disruption of Ccr2, which encodes CCL2's sole signaling receptor, accelerated tumor development, shortened host survival, and mobilized EPCs. However, pharmacological inhibition of CCR2 phenocopied Ccl2 disruption rather than Ccr2 disruption, suggesting that the Ccr2-/- phenotype is a consequence of unanticipated alterations not linked to intact CCL2/CCR2 signaling. Consistent with this explanation, Ccr2-/- monocytes are more divergent from wild type monocytes than Ccl2-/- monocytes in their expression of genes involved in key developmental and functional pathways. Taken together, our data suggest a tumor-promoting role for CCL2 acting through CCR2 on the tumor microenvironment and support the targeting of this chemokine/receptor pair in breast cancer.


Subject(s)
Chemokine CCL2/metabolism , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Receptor, ErbB-2/metabolism , Receptors, CCR2/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Chemokine CCL2/deficiency , Chemokine CCL2/genetics , Endothelial Progenitor Cells/pathology , Female , Gene Deletion , Humans , Mammary Neoplasms, Experimental/genetics , Mice , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/deficiency , Receptors, CCR2/genetics
9.
PLoS One ; 10(7): e0133152, 2015.
Article in English | MEDLINE | ID: mdl-26173023

ABSTRACT

Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients.


Subject(s)
Bone Neoplasms/immunology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Somatomedin/metabolism , Sarcoma/immunology , T-Lymphocytes/immunology , Adoptive Transfer/methods , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/therapy , Cell Line, Tumor , DNA Transposable Elements/genetics , Humans , Interferon-alpha/immunology , Interferon-alpha/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-13/immunology , Interleukin-13/metabolism , K562 Cells , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Receptor Tyrosine Kinase-like Orphan Receptors/immunology , Receptor, IGF Type 1 , Receptors, Antigen, T-Cell/immunology , Sarcoma/metabolism , Sarcoma/therapy , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL